論文の概要: Conversational Question Answering over Passages by Leveraging Word
Proximity Networks
- arxiv url: http://arxiv.org/abs/2004.13117v3
- Date: Mon, 25 May 2020 15:21:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 05:49:15.341899
- Title: Conversational Question Answering over Passages by Leveraging Word
Proximity Networks
- Title(参考訳): 単語近接ネットワークを活用した会話型質問応答
- Authors: Magdalena Kaiser, Rishiraj Saha Roy, Gerhard Weikum
- Abstract要約: CROWNは、経路応答を持つ会話型QAのための教師なしかつ効果的なシステムである。
複数のターンにまたがる複数のコンテキストの伝搬をサポートする。
CROWNはTREC CAsTデータで評価され、ニューラルネットワークのプールにおいて上述の性能を達成した。
- 参考スコア(独自算出の注目度): 33.59664244897881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Question answering (QA) over text passages is a problem of long-standing
interest in information retrieval. Recently, the conversational setting has
attracted attention, where a user asks a sequence of questions to satisfy her
information needs around a topic. While this setup is a natural one and similar
to humans conversing with each other, it introduces two key research
challenges: understanding the context left implicit by the user in follow-up
questions, and dealing with ad hoc question formulations. In this work, we
demonstrate CROWN (Conversational passage ranking by Reasoning Over Word
Networks): an unsupervised yet effective system for conversational QA with
passage responses, that supports several modes of context propagation over
multiple turns. To this end, CROWN first builds a word proximity network (WPN)
from large corpora to store statistically significant term co-occurrences. At
answering time, passages are ranked by a combination of their similarity to the
question, and coherence of query terms within: these factors are measured by
reading off node and edge weights from the WPN. CROWN provides an interface
that is both intuitive for end-users, and insightful for experts for
reconfiguration to individual setups. CROWN was evaluated on TREC CAsT data,
where it achieved above-median performance in a pool of neural methods.
- Abstract(参考訳): 文節に対する質問応答(QA)は情報検索における長年の関心の問題である。
近年,会話環境が注目され,ユーザがトピックに関する情報ニーズを満たすために一連の質問を行うようになっている。
このセットアップは自然なもので、人間が会話するのと似ているが、ユーザが暗黙に残したコンテキストを理解すること、アドホックな質問の定式化を扱うこと、という2つの重要な研究課題が導入されている。
本研究では,複数ターンにわたるコンテキスト伝達モードをサポートする会話型qaのための教師なしかつ効果的なシステムであるcrown (conversational passage ranking by reasoning over word networks): 実演する。
この目的のために、CROWNはまず大きなコーパスからワード近接ネットワーク(WPN)を構築し、統計的に重要な用語の共起を格納する。
回答時には、質問との類似度とクエリ用語のコヒーレンスの組み合わせによって評価される: これらの要因は、wpnからノードとエッジの重みを読み取ることによって測定される。
CROWNはエンドユーザに直感的なインターフェースを提供し、専門家には個々の設定に再構成するための洞察力がある。
CROWNはTREC CAsTデータで評価され、ニューラルネットワークのプールにおいて上述の性能を達成した。
関連論文リスト
- Phrase Retrieval for Open-Domain Conversational Question Answering with
Conversational Dependency Modeling via Contrastive Learning [54.55643652781891]
Open-Domain Conversational Question Answering (ODConvQA)は、マルチターン会話を通じて質問に答えることを目的としている。
そこで本研究では,単語列に対する句検索方式を用いて,回答を直接予測する手法を提案する。
論文 参考訳(メタデータ) (2023-06-07T09:46:38Z) - Keeping the Questions Conversational: Using Structured Representations
to Resolve Dependency in Conversational Question Answering [26.997542897342164]
本稿では,中間表現を会話の手がかりとして捉え,生成するための新しいフレームワークCONVSR(CONVQA using Structured Representations)を提案する。
我々はQuACとCANARDのデータセット上でモデルをテストし、提案するフレームワークが標準的な質問書き直しモデルよりも優れたF1スコアを達成できることを実験結果により示す。
論文 参考訳(メタデータ) (2023-04-14T13:42:32Z) - Conversational QA Dataset Generation with Answer Revision [2.5838973036257458]
本稿では,一節から質問に値するフレーズを抽出し,過去の会話を考慮し,それに対応する質問を生成する新しい枠組みを提案する。
本フレームワークでは,抽出した回答を質問生成後に修正し,その回答が一致した質問に正確に一致するようにした。
論文 参考訳(メタデータ) (2022-09-23T04:05:38Z) - Multifaceted Improvements for Conversational Open-Domain Question
Answering [54.913313912927045]
対話型オープンドメイン質問回答(MICQA)のための多面的改善フレームワークを提案する。
第一に、提案したKL分割に基づく正規化は、検索と解答のためのより良い質問理解をもたらすことができる。
第二に、追加されたポストランカモジュールは、より関連性の高いパスをトップにプッシュし、2アスペクトの制約で読者に選択できる。
第3に、十分に設計されたカリキュラム学習戦略は、訓練と推論の黄金の通路設定のギャップを効果的に狭め、黄金の通路支援なしで真の答えを見つけることを奨励する。
論文 参考訳(メタデータ) (2022-04-01T07:54:27Z) - Discourse Comprehension: A Question Answering Framework to Represent
Sentence Connections [35.005593397252746]
談話理解のためのモデルの構築と評価における重要な課題は、注釈付きデータの欠如である。
本稿では,ニュース文書の理解を目的としたスケーラブルなデータ収集を実現する新しいパラダイムを提案する。
得られたコーパスDCQAは、607の英語文書からなる22,430の質問応答ペアで構成されている。
論文 参考訳(メタデータ) (2021-11-01T04:50:26Z) - QAConv: Question Answering on Informative Conversations [85.2923607672282]
ビジネスメールやパネルディスカッション,作業チャネルなど,情報的な会話に重点を置いています。
合計で、スパンベース、フリーフォーム、および回答不能な質問を含む34,204のQAペアを収集します。
論文 参考訳(メタデータ) (2021-05-14T15:53:05Z) - Open Question Answering over Tables and Text [55.8412170633547]
オープンな質問応答(QA)では、質問に対する回答は、質問に対する回答を含む可能性のある文書を検索して分析することによって生成される。
ほとんどのオープンQAシステムは、構造化されていないテキストからのみ情報を取得することを検討している。
我々は,このタスクの性能を評価するために,新しい大規模データセット Open Table-and-Text Question Answering (OTT-QA) を提案する。
論文 参考訳(メタデータ) (2020-10-20T16:48:14Z) - Towards Data Distillation for End-to-end Spoken Conversational Question
Answering [65.124088336738]
音声対話型質問応答タスク(SCQA)を提案する。
SCQAは,音声発話とテキストコーパスから複雑な対話の流れをモデル化することを目的としている。
我々の主な目的は、音声とテキストの両方で会話的な質問に対処するQAシステムを構築することである。
論文 参考訳(メタデータ) (2020-10-18T05:53:39Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。