Improving the Detection of Small Oriented Objects in Aerial Images
- URL: http://arxiv.org/abs/2401.06503v1
- Date: Fri, 12 Jan 2024 11:00:07 GMT
- Title: Improving the Detection of Small Oriented Objects in Aerial Images
- Authors: Chandler Timm C. Doloriel and Rhandley D. Cajote
- Abstract summary: We propose a method to accurately detect small oriented objects in aerial images by enhancing the classification and regression tasks of the oriented object detection model.
We designed the Attention-Points Network consisting of two losses: Guided-Attention Loss (GALoss) and Box-Points Loss (BPLoss)
Experimental results show the effectiveness of our Attention-Points Network on a standard oriented aerial dataset with small object instances.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Small oriented objects that represent tiny pixel-area in large-scale aerial
images are difficult to detect due to their size and orientation. Existing
oriented aerial detectors have shown promising results but are mainly focused
on orientation modeling with less regard to the size of the objects. In this
work, we proposed a method to accurately detect small oriented objects in
aerial images by enhancing the classification and regression tasks of the
oriented object detection model. We designed the Attention-Points Network
consisting of two losses: Guided-Attention Loss (GALoss) and Box-Points Loss
(BPLoss). GALoss uses an instance segmentation mask as ground-truth to learn
the attention features needed to improve the detection of small objects. These
attention features are then used to predict box points for BPLoss, which
determines the points' position relative to the target oriented bounding box.
Experimental results show the effectiveness of our Attention-Points Network on
a standard oriented aerial dataset with small object instances (DOTA-v1.5) and
on a maritime-related dataset (HRSC2016). The code is publicly available.
Related papers
- ESOD: Efficient Small Object Detection on High-Resolution Images [36.80623357577051]
Small objects are usually sparsely distributed and locally clustered.
Massive feature extraction computations are wasted on the non-target background area of images.
We propose to reuse the detector's backbone to conduct feature-level object-seeking and patch-slicing.
arXiv Detail & Related papers (2024-07-23T12:21:23Z) - SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
We propose a simple yet effective Semi-supervised Oriented Object Detection method termed SOOD++.
Specifically, we observe that objects from aerial images are usually arbitrary orientations, small scales, and aggregation.
Extensive experiments conducted on various multi-oriented object datasets under various labeled settings demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-07-01T07:03:51Z) - Visible and Clear: Finding Tiny Objects in Difference Map [50.54061010335082]
We introduce a self-reconstruction mechanism in the detection model, and discover the strong correlation between it and the tiny objects.
Specifically, we impose a reconstruction head in-between the neck of a detector, constructing a difference map of the reconstructed image and the input, which shows high sensitivity to tiny objects.
We further develop a Difference Map Guided Feature Enhancement (DGFE) module to make the tiny feature representation more clear.
arXiv Detail & Related papers (2024-05-18T12:22:26Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
Small object detection remains unsatisfactory due to limited characteristics and high density and mutual overlap.
We propose methods enhancing sampling within an end-to-end framework.
Our model demonstrates a significant enhancement, achieving a 2.9% increase in average precision (AP) over the state-of-the-art (SOTA) on the VisDrone dataset.
arXiv Detail & Related papers (2024-05-17T04:37:44Z) - YOLC: You Only Look Clusters for Tiny Object Detection in Aerial Images [33.80392696735718]
YOLC (You Only Look Clusters) is an efficient and effective framework that builds on an anchor-free object detector, CenterNet.
To overcome the challenges posed by large-scale images and non-uniform object distribution, we introduce a Local Scale Module (LSM) that adaptively searches cluster regions for zooming in for accurate detection.
We perform extensive experiments on two aerial image datasets, including Visdrone 2019 and UAVDT, to demonstrate the effectiveness and superiority of our proposed approach.
arXiv Detail & Related papers (2024-04-09T10:03:44Z) - PointOBB: Learning Oriented Object Detection via Single Point
Supervision [55.88982271340328]
This paper proposes PointOBB, the first single Point-based OBB generation method, for oriented object detection.
PointOBB operates through the collaborative utilization of three distinctive views: an original view, a resized view, and a rotated/flipped (rot/flp) view.
Experimental results on the DIOR-R and DOTA-v1.0 datasets demonstrate that PointOBB achieves promising performance.
arXiv Detail & Related papers (2023-11-23T15:51:50Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Object Detection in Aerial Images with Uncertainty-Aware Graph Network [61.02591506040606]
We propose a novel uncertainty-aware object detection framework with a structured-graph, where nodes and edges are denoted by objects.
We refer to our model as Uncertainty-Aware Graph network for object DETection (UAGDet)
arXiv Detail & Related papers (2022-08-23T07:29:03Z) - Focus-and-Detect: A Small Object Detection Framework for Aerial Images [1.911678487931003]
We propose a two-stage object detection framework called "Focus-and-Detect"
The first stage generates clusters of objects constituting the focused regions.
The second stage, which is also an object detector network, predicts objects within the focal regions.
Results indicate that the proposed two-stage framework achieves an AP score of 42.06 on VisDrone validation dataset.
arXiv Detail & Related papers (2022-03-24T10:43:56Z) - SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing [131.04304632759033]
Small and cluttered objects are common in real-world which are challenging for detection.
In this paper, we first innovatively introduce the idea of denoising to object detection.
Instance-level denoising on the feature map is performed to enhance the detection to small and cluttered objects.
arXiv Detail & Related papers (2020-04-28T06:03:54Z) - PENet: Object Detection using Points Estimation in Aerial Images [9.33900415971554]
A novel network structure, Points Estimated Network (PENet), is proposed in this work to answer these challenges.
PENet uses a Mask Resampling Module (MRM) to augment the imbalanced datasets, a coarse anchor-free detector (CPEN) to effectively predict the center points of the small object clusters, and a fine anchor-free detector FPEN to locate the precise positions of the small objects.
Our experiments on aerial datasets visDrone and UAVDT showed that PENet achieved higher precision results than existing state-of-the-art approaches.
arXiv Detail & Related papers (2020-01-22T19:43:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.