論文の概要: Every Document Owns Its Structure: Inductive Text Classification via
Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2004.13826v2
- Date: Tue, 12 May 2020 08:28:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 18:23:48.497167
- Title: Every Document Owns Its Structure: Inductive Text Classification via
Graph Neural Networks
- Title(参考訳): すべての文書が構造を所有する:グラフニューラルネットワークによる帰納的テキスト分類
- Authors: Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen Wen and Liang Wang
- Abstract要約: グラフニューラルネットワーク(GNN)を用いたインダクティブテキスト分類のためのテクスティングを提案する。
まず、各文書の個々のグラフを作成し、次にGNNを用いて局所構造に基づいて粒度の細かい単語表現を学習する。
本手法は,最先端のテキスト分類法より優れている。
- 参考スコア(独自算出の注目度): 22.91359631452695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text classification is fundamental in natural language processing (NLP), and
Graph Neural Networks (GNN) are recently applied in this task. However, the
existing graph-based works can neither capture the contextual word
relationships within each document nor fulfil the inductive learning of new
words. In this work, to overcome such problems, we propose TextING for
inductive text classification via GNN. We first build individual graphs for
each document and then use GNN to learn the fine-grained word representations
based on their local structures, which can also effectively produce embeddings
for unseen words in the new document. Finally, the word nodes are aggregated as
the document embedding. Extensive experiments on four benchmark datasets show
that our method outperforms state-of-the-art text classification methods.
- Abstract(参考訳): 自然言語処理(NLP)ではテキスト分類が基本であり,近年,グラフニューラルネットワーク(GNN)が採用されている。
しかし、既存のグラフベースの作品は、各文書内の文脈的単語関係を捉えることも、新しい単語の帰納的学習を補うこともできない。
本研究では,このような問題を克服するために,GNN を用いた帰納的テキスト分類のための Texting を提案する。
まず、各文書の個々のグラフを作成し、次にGNNを使用して、その局所構造に基づいて粒度の細かい単語表現を学習し、また、新しい文書に見えない単語の埋め込みを効果的に生成する。
最後に、単語ノードを文書埋め込みとして集約する。
4つのベンチマークデータセットの大規模な実験により,本手法は最先端のテキスト分類法より優れていることが示された。
関連論文リスト
- Graph Neural Networks on Discriminative Graphs of Words [19.817473565906777]
本研究では,単語グラフニューラルネットワーク(DGoW-GNN)によるテキストの識別手法を提案する。
本稿では,GNNとシーケンスモデルを組み合わせたグラフベースのテキスト分類の新しいモデルを提案する。
提案手法を7つのベンチマークデータセットで評価し,いくつかの最先端ベースラインモデルにより性能が向上していることを確認した。
論文 参考訳(メタデータ) (2024-10-27T15:14:06Z) - Pretraining Language Models with Text-Attributed Heterogeneous Graphs [28.579509154284448]
テキスト分散不均質グラフ(TAHG)におけるトポロジ的および異種情報を明確に考察する言語モデル(LM)のための新しい事前学習フレームワークを提案する。
本稿では、LMと補助異種グラフニューラルネットワークを協調最適化することにより、コンテキストグラフに関わるノードを予測するトポロジ対応事前学習タスクを提案する。
各種ドメインの3つのデータセット上でリンク予測とノード分類を行う。
論文 参考訳(メタデータ) (2023-10-19T08:41:21Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z) - Word Grounded Graph Convolutional Network [24.6338889954789]
グラフ畳み込みネットワーク(GCN)は、テキスト分類などの様々なタスクにおけるテキスト表現の学習において、高いパフォーマンスを示している。
本稿では,文書非依存グラフを用いて,文書グラフをワードグラフに変換し,データサンプルとGCNモデルを分離することを提案する。
提案したWord-level Graph(WGraph)は、コーパスで一般的に使われている単語共起による単語表現を暗黙的に学習するだけでなく、さらにグローバルなセマンティック依存も含んでいる。
論文 参考訳(メタデータ) (2023-05-10T19:56:55Z) - Understanding Graph Convolutional Networks for Text Classification [9.495731689143827]
本稿では,グラフにおけるノードとエッジの埋め込みの役割と,テキスト分類におけるGCN学習手法を包括的に分析する。
我々の分析はこの種の最初のものであり、各グラフノード/エッジ構築メカニズムの重要性についての有用な洞察を提供する。
論文 参考訳(メタデータ) (2022-03-30T05:14:31Z) - Sparse Structure Learning via Graph Neural Networks for Inductive
Document Classification [2.064612766965483]
帰納的文書分類のための新しいGNNに基づくスパース構造学習モデルを提案する。
本モデルでは,文間の不連続な単語を接続する訓練可能なエッジの集合を収集し,動的文脈依存性を持つエッジを疎結合に選択するために構造学習を用いる。
いくつかの実世界のデータセットの実験では、提案されたモデルがほとんどの最先端の結果より優れていることが示されている。
論文 参考訳(メタデータ) (2021-12-13T02:36:04Z) - Hierarchical Heterogeneous Graph Representation Learning for Short Text
Classification [60.233529926965836]
短文分類のためのグラフニューラルネットワーク(GNN)に基づく ShiNE と呼ばれる新しい手法を提案する。
まず,短文データセットを単語レベル成分グラフからなる階層的不均一グラフとしてモデル化する。
そして、類似した短いテキスト間の効果的なラベル伝搬を容易にするショート文書グラフを動的に学習する。
論文 参考訳(メタデータ) (2021-10-30T05:33:05Z) - Graph Neural Networks for Natural Language Processing: A Survey [64.36633422999905]
本稿では,自然言語処理のためのグラフニューラルネットワーク(GNN)について概観する。
我々は,グラフ構築,グラフ表現学習,グラフベースエンコーダ・デコーダモデルという3つの軸に沿って,NLP用GNNの既存の研究を組織する,NLP用GNNの新しい分類法を提案する。
論文 参考訳(メタデータ) (2021-06-10T23:59:26Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
階層的にGNNコンポーネントを言語モデルのトランスフォーマーブロックと一緒にネストするGraphFormerを提案する。
提案したアーキテクチャでは、テキストエンコーディングとグラフ集約を反復的なワークフローに融合する。
さらに、プログレッシブ・ラーニング・ストラテジーを導入し、そのモデルが操作されたデータと元のデータに基づいて連続的に訓練され、グラフ上の情報を統合する能力を強化する。
論文 参考訳(メタデータ) (2021-05-06T12:20:41Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
グラフニューラルネットワーク(GNN)は、研究コミュニティで注目され、この標準タスクで有望な結果を実証している。
成功にもかかわらず、それらのパフォーマンスは、単語間の高次相互作用をキャプチャできないため、実際は大部分が危険に晒される可能性がある。
本稿では,テキスト表現学習において,少ない計算量でより表現力の高いハイパーグラフアテンションネットワーク(HyperGAT)を提案する。
論文 参考訳(メタデータ) (2020-11-01T00:21:59Z) - Heterogeneous Graph Neural Networks for Extractive Document
Summarization [101.17980994606836]
クロス文関係は、抽出文書要約における重要なステップである。
We present a graph-based neural network for extractive summarization (HeterSumGraph)
抽出文書要約のためのグラフベースニューラルネットワークに異なる種類のノードを導入する。
論文 参考訳(メタデータ) (2020-04-26T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。