論文の概要: Understanding Graph Convolutional Networks for Text Classification
- arxiv url: http://arxiv.org/abs/2203.16060v1
- Date: Wed, 30 Mar 2022 05:14:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-01 00:33:22.615840
- Title: Understanding Graph Convolutional Networks for Text Classification
- Title(参考訳): テキスト分類のためのグラフ畳み込みネットワークの理解
- Authors: Soyeon Caren Han, Zihan Yuan, Kunze Wang, Siqu Long, Josiah Poon
- Abstract要約: 本稿では,グラフにおけるノードとエッジの埋め込みの役割と,テキスト分類におけるGCN学習手法を包括的に分析する。
我々の分析はこの種の最初のものであり、各グラフノード/エッジ構築メカニズムの重要性についての有用な洞察を提供する。
- 参考スコア(独自算出の注目度): 9.495731689143827
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Convolutional Networks (GCN) have been effective at tasks that have
rich relational structure and can preserve global structure information of a
dataset in graph embeddings. Recently, many researchers focused on examining
whether GCNs could handle different Natural Language Processing tasks,
especially text classification. While applying GCNs to text classification is
well-studied, its graph construction techniques, such as node/edge selection
and their feature representation, and the optimal GCN learning mechanism in
text classification is rather neglected. In this paper, we conduct a
comprehensive analysis of the role of node and edge embeddings in a graph and
its GCN learning techniques in text classification. Our analysis is the first
of its kind and provides useful insights into the importance of each graph
node/edge construction mechanism when applied at the GCN training/testing in
different text classification benchmarks, as well as under its semi-supervised
environment.
- Abstract(参考訳): グラフ畳み込みネットワーク(gcn)は、リッチなリレーショナル構造を持ち、グラフ埋め込みでデータセットのグローバル構造情報を保存できるタスクにおいて有効である。
近年、多くの研究者が、GCNが異なる自然言語処理タスク、特にテキスト分類を処理できるかどうかを検討することに重点を置いている。
テキスト分類にGCNを適用することはよく研究されているが、ノード/エッジの選択や特徴表現などのグラフ構築技術や、テキスト分類における最適なGCN学習機構は無視されている。
本稿では,グラフにおけるノードとエッジの埋め込みの役割と,テキスト分類におけるGCN学習手法を包括的に分析する。
この分析は,GCNのトレーニング/テストにおける各グラフノード/エッジ構築機構の重要性と,その半教師付き環境下での検証に有用である。
関連論文リスト
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Learnable Structural Semantic Readout for Graph Classification [23.78861906423389]
位置レベルでのノード表現を要約するために,構造的セマンティック・リードアウト(SSRead)を提案する。
SSReadは、ノードと構造プロトタイプ間のセマンティックアライメントを使用することで、構造的に意味のある位置を特定することを目的としている。
実験の結果,SSReadはGNN分類器の分類性能と解釈可能性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2021-11-22T20:44:27Z) - Self-supervised Graph-level Representation Learning with Local and
Global Structure [71.45196938842608]
自己教師付き全グラフ表現学習のためのローカル・インスタンスとグローバル・セマンティック・ラーニング(GraphLoG)という統合フレームワークを提案する。
GraphLoGは、局所的な類似点の保存に加えて、グローバルなセマンティッククラスタをキャプチャする階層的なプロトタイプも導入している。
モデル学習のための効率的なオンライン予測最大化(EM)アルゴリズムがさらに開発された。
論文 参考訳(メタデータ) (2021-06-08T05:25:38Z) - Hierarchical Graph Capsule Network [78.4325268572233]
ノード埋め込みを共同で学習し,グラフ階層を抽出できる階層型グラフカプセルネットワーク(HGCN)を提案する。
階層的表現を学ぶために、HGCNは下層カプセル(部分)と高層カプセル(全体)の間の部分的関係を特徴付ける。
論文 参考訳(メタデータ) (2020-12-16T04:13:26Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
グラフ畳み込みネットワーク(GCN)は,豊富な情報を持つ複雑なグラフにおいて,ノードの特徴と位相構造を最適に統合できるかどうかを検討する。
半教師付き分類(AM-GCN)のための適応型マルチチャネルグラフ畳み込みネットワークを提案する。
実験の結果,AM-GCNはノードの特徴とトポロジ的構造の両方から最も相関性の高い情報を抽出することがわかった。
論文 参考訳(メタデータ) (2020-07-05T08:16:03Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
本稿では,知識埋め込みに基づくグラフ畳み込みネットワーク(KE-GCN)という新しいフレームワークを提案する。
KE-GCNはグラフベースの信念伝播におけるグラフ畳み込みネットワーク(GCN)のパワーと高度な知識埋め込み手法の強みを組み合わせたものである。
理論的解析により、KE-GCNはいくつかのよく知られたGCN法のエレガントな統一を具体例として示している。
論文 参考訳(メタデータ) (2020-06-12T17:12:51Z) - Every Document Owns Its Structure: Inductive Text Classification via
Graph Neural Networks [22.91359631452695]
グラフニューラルネットワーク(GNN)を用いたインダクティブテキスト分類のためのテクスティングを提案する。
まず、各文書の個々のグラフを作成し、次にGNNを用いて局所構造に基づいて粒度の細かい単語表現を学習する。
本手法は,最先端のテキスト分類法より優れている。
論文 参考訳(メタデータ) (2020-04-22T07:23:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。