論文の概要: Empower Entity Set Expansion via Language Model Probing
- arxiv url: http://arxiv.org/abs/2004.13897v2
- Date: Mon, 29 Jun 2020 22:57:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 13:36:01.413323
- Title: Empower Entity Set Expansion via Language Model Probing
- Title(参考訳): 言語モデルによるエンティティセット拡張の強化
- Authors: Yunyi Zhang, Jiaming Shen, Jingbo Shang and Jiawei Han
- Abstract要約: 既存の拡張方法は、コンテキスト特徴を適応的に選択し、新しいエンティティを抽出することで、シードエンティティをブートストラップする。
エンティティセット拡張の鍵となる課題は、クラスセマンティクスをシフトし、後のイテレーションで累積エラーにつながる曖昧なコンテキスト機能を選択することを避けることである。
セマンティックドリフト問題に対処するために、自動生成されたクラス名を活用する新しい反復的集合拡張フレームワークを提案する。
- 参考スコア(独自算出の注目度): 58.78909391545238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity set expansion, aiming at expanding a small seed entity set with new
entities belonging to the same semantic class, is a critical task that benefits
many downstream NLP and IR applications, such as question answering, query
understanding, and taxonomy construction. Existing set expansion methods
bootstrap the seed entity set by adaptively selecting context features and
extracting new entities. A key challenge for entity set expansion is to avoid
selecting ambiguous context features which will shift the class semantics and
lead to accumulative errors in later iterations. In this study, we propose a
novel iterative set expansion framework that leverages automatically generated
class names to address the semantic drift issue. In each iteration, we select
one positive and several negative class names by probing a pre-trained language
model, and further score each candidate entity based on selected class names.
Experiments on two datasets show that our framework generates high-quality
class names and outperforms previous state-of-the-art methods significantly.
- Abstract(参考訳): エンティティセットの拡張は、同じセマンティッククラスに属する新しいエンティティでセットされた小さなシードエンティティの拡大を目的としており、質問応答、クエリ理解、分類学構築など、多くの下流のNLPおよびIRアプリケーションに恩恵をもたらす重要なタスクである。
既存のセット拡張メソッドは、コンテキスト特徴を適応的に選択し、新しいエンティティを抽出することでシードエンティティセットをブートストラップする。
エンティティセット拡張の鍵となる課題は、クラスセマンティクスをシフトし、後のイテレーションで累積エラーにつながる曖昧なコンテキスト機能を選択することを避けることである。
本研究では,セマンティックドリフト問題に対処するために,自動生成したクラス名を活用する新しい反復的集合拡張フレームワークを提案する。
各イテレーションにおいて、事前訓練された言語モデルを用いて1つの正のクラス名と複数の負のクラス名を選択し、さらに選択されたクラス名に基づいて各候補エンティティをスコアする。
2つのデータセットでの実験では、フレームワークが高品質なクラス名を生成し、以前の最先端メソッドを大幅に上回っています。
関連論文リスト
- Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning [65.57123249246358]
PTMベースのCILのためのExpAndable Subspace Ensemble (EASE)を提案する。
タスク固有のサブスペースを作成することを目的として、新しいタスクごとに異なる軽量アダプタモジュールをトレーニングする。
我々のプロトタイプ補完戦略は、古いクラスのインスタンスを使わずに、古いクラスの新機能を合成します。
論文 参考訳(メタデータ) (2024-03-18T17:58:13Z) - AttrSeg: Open-Vocabulary Semantic Segmentation via Attribute
Decomposition-Aggregation [33.25304533086283]
オープンボキャブラリセマンティックセグメンテーションは、推論時に新しいオブジェクトカテゴリをセグメンテーションする必要がある難しいタスクである。
最近の研究では、この課題に対処するために視覚言語による事前訓練が検討されているが、現実的なシナリオでは非現実的な仮定に悩まされている。
本研究は,新しい概念を理解する上で,人間の認知に触発された新しい属性分解集約フレームワークであるAttrSegを提案する。
論文 参考訳(メタデータ) (2023-08-31T19:34:09Z) - Advancing Incremental Few-shot Semantic Segmentation via Semantic-guided
Relation Alignment and Adaptation [98.51938442785179]
増分的な数ショットセマンティックセマンティックセマンティクスは、セマンティクスセマンティクスモデルを新しいクラスに漸進的に拡張することを目的としている。
このタスクは、データ不均衡のため、ベースクラスと新しいクラスの間で深刻な意味認識の問題に直面します。
本稿では,従来の意味情報のガイダンスを完全に考慮した意味誘導型関係調整適応法を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:40:52Z) - What's in a Name? Beyond Class Indices for Image Recognition [28.02490526407716]
そこで本稿では,カテゴリの巨大語彙のみを先行情報として付与した画像に,クラス名を割り当てる視覚言語モデルを提案する。
非パラメトリックな手法を用いて画像間の有意義な関係を確立することにより、モデルが候補名のプールを自動的に絞り込むことができる。
本手法は,教師なし環境でのImageNetのベースラインを約50%改善する。
論文 参考訳(メタデータ) (2023-04-05T11:01:23Z) - Learning to Name Classes for Vision and Language Models [57.0059455405424]
大規模な視覚と言語モデルは、クラス固有のテキストクエリを画像コンテンツにマッピングすることで、印象的なゼロショット認識性能を達成することができる。
視覚的コンテンツの機能として,各クラスに対して最適な単語埋め込みを学習するために,利用可能なデータを活用することを提案する。
凍結したモデルに新しい単語の埋め込みを学習することで、新しいクラスに対してゼロショットの能力を保ち、新しいデータセットにモデルを適応しやすくし、潜在的に誤った、非記述的、曖昧なクラス名を調整することができる。
論文 参考訳(メタデータ) (2023-04-04T14:34:44Z) - CCPrefix: Counterfactual Contrastive Prefix-Tuning for Many-Class
Classification [57.62886091828512]
多クラス分類のための新しいプレフィックスチューニング手法であるCCPrefixを提案する。
基本的に、ラベル空間における実数対から派生したインスタンス依存の軟式接頭辞は、多クラス分類における言語動詞化を補完するために利用される。
論文 参考訳(メタデータ) (2022-11-11T03:45:59Z) - Automatic Context Pattern Generation for Entity Set Expansion [40.535332689515656]
我々は,エンティティの高品質なコンテキストパターンを自動的に生成するモジュールを開発する。
また、前述のGenerAted PAtternsを活用してターゲットエンティティを拡張するGAPAフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-17T06:50:35Z) - InstructionNER: A Multi-Task Instruction-Based Generative Framework for
Few-shot NER [31.32381919473188]
InstructionNERというマルチタスク命令ベースの生成フレームワークを提案する。
具体的には、NERタスクを生成問題として再構成し、タスク固有の命令と回答オプションでソース文を豊かにし、自然言語のエンティティと型を推論する。
実験結果から,本手法は5つのデータセットのベースラインを数ショット設定で一貫的に上回っていることがわかった。
論文 参考訳(メタデータ) (2022-03-08T07:56:36Z) - Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification [91.67977602992657]
本稿では,従来の特徴適応手法よりもシンプルかつ効果的である特徴選択に基づく新しい戦略を提案する。
このような特徴の上に構築された単純な非パラメトリック分類器は高い精度を示し、訓練中に見たことのない領域に一般化する。
論文 参考訳(メタデータ) (2020-03-20T15:44:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。