論文の概要: Revisiting Round-Trip Translation for Quality Estimation
- arxiv url: http://arxiv.org/abs/2004.13937v1
- Date: Wed, 29 Apr 2020 03:20:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 12:39:36.029003
- Title: Revisiting Round-Trip Translation for Quality Estimation
- Title(参考訳): 品質評価のためのラウンドトリップ翻訳の再検討
- Authors: Jihyung Moon, Hyunchang Cho, Eunjeong L. Park
- Abstract要約: 品質評価(QE)とは、人間が翻訳した参照を使わずに翻訳の質を自動的に評価するタスクである。
本稿では,RTTベースのQEにセマンティック埋め込みを適用する。
提案手法は,従来のWMT 2019品質評価基準よりも,人間の判断と高い相関性が得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Quality estimation (QE) is the task of automatically evaluating the quality
of translations without human-translated references. Calculating BLEU between
the input sentence and round-trip translation (RTT) was once considered as a
metric for QE, however, it was found to be a poor predictor of translation
quality. Recently, various pre-trained language models have made breakthroughs
in NLP tasks by providing semantically meaningful word and sentence embeddings.
In this paper, we employ semantic embeddings to RTT-based QE. Our method
achieves the highest correlations with human judgments, compared to previous
WMT 2019 quality estimation metric task submissions. While backward translation
models can be a drawback when using RTT, we observe that with semantic-level
metrics, RTT-based QE is robust to the choice of the backward translation
system. Additionally, the proposed method shows consistent performance for both
SMT and NMT forward translation systems, implying the method does not penalize
a certain type of model.
- Abstract(参考訳): 品質評価(QE)は、人間の翻訳参照なしで翻訳の質を自動的に評価するタスクである。
入力文とラウンドトリップ翻訳(RTT)の間のBLEUの計算は、かつてQEの指標と考えられていたが、翻訳品質の予測には不十分であった。
近年,様々な事前学習型言語モデルが意味的に意味のある単語と文の埋め込みを提供することで,NLPタスクを突破した。
本稿では,RTTベースのQEにセマンティック埋め込みを適用する。
提案手法は,従来のWMT 2019品質評価基準よりも,人間の判断と高い相関性が得られる。
RTTを用いた場合、下位翻訳モデルは欠点となるが、意味レベルのメトリクスでは、RTTベースのQEは下位翻訳システムの選択に対して堅牢である。
さらに,提案手法はsmtとnmtの両方の前方変換システムにおいて一貫した性能を示し,特定のモデルにペナルティを課さないことを示唆する。
関連論文リスト
- Improving Machine Translation with Human Feedback: An Exploration of Quality Estimation as a Reward Model [75.66013048128302]
本研究では,QEモデルを報酬モデルとして活用し,フィードバックトレーニングにおける人間の嗜好を予測する可能性について検討する。
まず,QEに基づくフィードバックトレーニングにおいて,翻訳品質が低下する中で,報酬の増大として現れる過度な最適化問題を同定した。
問題に対処するために,ルールを用いて誤った翻訳を検知し,報酬のスコアにペナルティ項を割り当てる,シンプルで効果的な手法を採用する。
論文 参考訳(メタデータ) (2024-01-23T16:07:43Z) - Unsupervised Translation Quality Estimation Exploiting Synthetic Data
and Pre-trained Multilingual Encoder [17.431776840662273]
教師なし文レベルTQEにおける合成TQEデータと事前学習多言語エンコーダの有用性について検討した。
WMT20およびWMT21データセットに対する実験により、この手法は高解像度および低リソースの翻訳方向において、他の教師なしTQE手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-09T03:10:42Z) - Knowledge-Prompted Estimator: A Novel Approach to Explainable Machine
Translation Assessment [20.63045120292095]
言語間機械翻訳(MT)の品質評価は,翻訳性能を評価する上で重要な役割を担っている。
GEMBAはLarge Language Models (LLMs) に基づく最初のMT品質評価尺度であり、システムレベルのMT品質評価において最先端(SOTA)を達成するために一段階のプロンプトを用いる。
本稿では,KPE(Knowledge-Prompted Estor)という,難易度,トークンレベルの類似度,文レベルの類似度を含む3つのワンステッププロンプト技術を組み合わせたCoTプロンプト手法を提案する。
論文 参考訳(メタデータ) (2023-06-13T01:18:32Z) - Competency-Aware Neural Machine Translation: Can Machine Translation
Know its Own Translation Quality? [61.866103154161884]
ニューラルマシン翻訳(NMT)は、意識せずに起こる失敗に対してしばしば批判される。
本稿では,従来のNMTを自己推定器で拡張することで,新たな能力認識型NMTを提案する。
提案手法は品質評価において優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2022-11-25T02:39:41Z) - Rethink about the Word-level Quality Estimation for Machine Translation
from Human Judgement [57.72846454929923]
ベンチマークデータセットであるemphHJQEを作成し、専門家翻訳者が不適切な翻訳語を直接アノテートする。
本稿では,タグリファインメント戦略と木ベースのアノテーション戦略という2つのタグ補正戦略を提案し,TERベースの人工QEコーパスをemphHJQEに近づける。
その結果,提案したデータセットは人間の判断と一致しており,また,提案したタグ補正戦略の有効性も確認できた。
論文 参考訳(メタデータ) (2022-09-13T02:37:12Z) - Measuring Uncertainty in Translation Quality Evaluation (TQE) [62.997667081978825]
本研究は,翻訳テキストのサンプルサイズに応じて,信頼区間を精度良く推定する動機づけた研究を行う。
我々はベルヌーイ統計分布モデリング (BSDM) とモンテカルロサンプリング分析 (MCSA) の手法を適用した。
論文 参考訳(メタデータ) (2021-11-15T12:09:08Z) - Ensemble Fine-tuned mBERT for Translation Quality Estimation [0.0]
本稿では,WMT 2021 QE共有タスクの提出について論じる。
提案システムは多言語BERT(mBERT)に基づく回帰モデルのアンサンブルである。
ピアソンの相関に匹敵する性能を示し、いくつかの言語対に対してMAE/RMSEのベースラインシステムを破る。
論文 参考訳(メタデータ) (2021-09-08T20:13:06Z) - Verdi: Quality Estimation and Error Detection for Bilingual [23.485380293716272]
Verdiはバイリンガルコーパスのための単語レベルおよび文レベルの後編集作業推定のための新しいフレームワークである。
バイリンガルコーパスの対称性を活用し,NMT予測器にモデルレベル二重学習を適用した。
我々の手法は競争の勝者を圧倒し、他の基準法よりも大きなマージンで上回る。
論文 参考訳(メタデータ) (2021-05-31T11:04:13Z) - Source and Target Bidirectional Knowledge Distillation for End-to-end
Speech Translation [88.78138830698173]
外部テキストベースNMTモデルからのシーケンスレベルの知識蒸留(SeqKD)に注目した。
E2E-STモデルを訓練し、パラフレーズ転写を1つのデコーダで補助タスクとして予測する。
論文 参考訳(メタデータ) (2021-04-13T19:00:51Z) - Unsupervised Quality Estimation for Neural Machine Translation [63.38918378182266]
既存のアプローチでは、大量の専門家アノテートデータ、計算、トレーニング時間が必要です。
MTシステム自体以外に、トレーニングや追加リソースへのアクセスが不要なQEに対して、教師なしのアプローチを考案する。
我々は品質の人間の判断と非常によく相関し、最先端の教師付きQEモデルと競合する。
論文 参考訳(メタデータ) (2020-05-21T12:38:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。