論文の概要: Detecting Domain Polarity-Changes of Words in a Sentiment Lexicon
- arxiv url: http://arxiv.org/abs/2004.14357v1
- Date: Wed, 29 Apr 2020 17:35:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 13:50:50.004028
- Title: Detecting Domain Polarity-Changes of Words in a Sentiment Lexicon
- Title(参考訳): 感性語彙における単語の領域極性変化の検出
- Authors: Shuai Wang, Guangyi Lv, Sahisnu Mazumder, Bing Liu
- Abstract要約: 多くの感情語はドメインに依存している。つまり、一部のドメインでは肯定的であるが、一部のドメインでは否定的である。
本稿では,この問題に対処するためのグラフベースの手法を提案する。
実験結果から,複数の実世界のデータセット上での有効性が示された。
- 参考スコア(独自算出の注目度): 24.818142279945633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentiment lexicons are instrumental for sentiment analysis. One can use a set
of sentiment words provided in a sentiment lexicon and a lexicon-based
classifier to perform sentiment classification. One major issue with this
approach is that many sentiment words are domain dependent. That is, they may
be positive in some domains but negative in some others. We refer to this
problem as domain polarity-changes of words. Detecting such words and
correcting their sentiment for an application domain is very important. In this
paper, we propose a graph-based technique to tackle this problem. Experimental
results show its effectiveness on multiple real-world datasets.
- Abstract(参考訳): 感覚レキシコンは感情分析に有効である。
感情分類を行うために、感情辞書と語彙ベースの分類器に提供される感情単語のセットを使用することができる。
このアプローチの大きな問題のひとつは、多くの感情語がドメインに依存しています。
すなわち、ある領域では肯定的であるが、別の領域では否定的である。
この問題をドメイン極性変化(domain polarity changes of words)と呼ぶ。
このような言葉の検出とアプリケーションドメインに対する感情の修正は、非常に重要です。
本稿では,この問題に対処するためのグラフベース手法を提案する。
実験の結果,複数の実世界のデータセットでの有効性が示された。
関連論文リスト
- What is Sentiment Meant to Mean to Language Models? [0.0]
センチメント(sentiment)は、使用するドメインやツールによって、さまざまな概念を包含する。
感覚」は、感情、意見、市場の動き、あるいは単に一般の善悪の次元を意味するために使われてきた。
論文 参考訳(メタデータ) (2024-05-03T19:37:37Z) - A Comparison of Lexicon-Based and ML-Based Sentiment Analysis: Are There
Outlier Words? [14.816706893177997]
本稿では、4つのドメインから抽出された15万以上の英語テキストに対する感情を計算する。
回帰モデルを用いて各ドメインの文書に対するアプローチ間の感情スコアの差をモデル化する。
以上の結果から,単語の重要性はドメインに依存しており,感情スコアの違いを系統的に引き起こす辞書項目が存在しないことが示唆された。
論文 参考訳(メタデータ) (2023-11-10T18:21:50Z) - Cross-domain Sentiment Classification in Spanish [18.563342761346608]
商品レビューの大規模なデータベースで訓練された分類システムを用いて、異なるスペインドメインに一般化する能力について検討する。
結果として、これらの製品レビューをトレーニングすると、ドメイン間の一般化は実現可能であるが、非常に難しいことが示唆される。
論文 参考訳(メタデータ) (2023-03-15T23:11:30Z) - Sentiment-Aware Word and Sentence Level Pre-training for Sentiment
Analysis [64.70116276295609]
SentiWSPは、WordレベルとSentenceレベルの事前トレーニングタスクを組み合わせた、Sentiment対応の事前トレーニング言語モデルである。
SentiWSPは、様々な文レベルおよびアスペクトレベルの感情分類ベンチマーク上で、最先端のパフォーマンスを新たに達成する。
論文 参考訳(メタデータ) (2022-10-18T12:25:29Z) - Accurate Emotion Strength Assessment for Seen and Unseen Speech Based on
Data-Driven Deep Learning [70.30713251031052]
本研究では,データ駆動型深層学習モデル,すなわちSenseNetを提案する。
実験の結果,提案した強度ネットの予測感情強度は,目視と目視の両方の真理値と高い相関性を示した。
論文 参考訳(メタデータ) (2022-06-15T01:25:32Z) - Automatic Construction of Context-Aware Sentiment Lexicon in the
Financial Domain Using Direction-Dependent Words [6.664755699733471]
我々は、方向依存語からなる感性語彙に対してSenti-DDという語彙を構築する。
実験の結果,Senti-DDでは高い分類性能が得られた。
論文 参考訳(メタデータ) (2021-06-10T13:08:00Z) - Accelerating Text Mining Using Domain-Specific Stop Word Lists [57.76576681191192]
本稿では,超平面的アプローチと呼ばれるドメイン固有語の自動抽出手法を提案する。
ハイパープレーンベースのアプローチは、無関係な特徴を排除することによって、テキストの寸法を著しく削減することができる。
その結果,超平面型アプローチはコーパスの寸法を90%削減し,相互情報より優れることがわかった。
論文 参考訳(メタデータ) (2020-11-18T17:42:32Z) - Domain Agnostic Learning for Unbiased Authentication [47.85174796247398]
ドメインラベルなしでドメインの差分を除去するドメインに依存しない手法を提案する。
潜伏領域は入力と出力の間の不均一な予測関係を学習することによって発見される。
提案手法をメタラーニングフレームワークに拡張し,ドメイン差分除去をより徹底的に進める。
論文 参考訳(メタデータ) (2020-10-11T14:05:16Z) - Speakers Fill Lexical Semantic Gaps with Context [65.08205006886591]
我々は単語の語彙的あいまいさを意味のエントロピーとして運用する。
単語のあいまいさの推定値と,WordNetにおける単語の同義語数との間には,有意な相関関係が認められた。
これは、あいまいさの存在下では、話者が文脈をより情報的にすることで補うことを示唆している。
論文 参考訳(メタデータ) (2020-10-05T17:19:10Z) - A Variational Approach to Unsupervised Sentiment Analysis [8.87759101018566]
本研究では,教師なし感情分析のための変分アプローチを提案する。
我々は、監視信号としてターゲット-オピニオンワードペアを使用する。
顧客レビューと臨床物語に対する感情分析に本手法を適用した。
論文 参考訳(メタデータ) (2020-08-21T09:52:35Z) - Improving Domain-Adapted Sentiment Classification by Deep Adversarial
Mutual Learning [51.742040588834996]
ドメイン適応型感情分類(ドメイン適応型感情分類、Domain-adapted sentiment classification)は、ラベル付きソースドメインでトレーニングを行い、ラベルなしターゲットドメイン上で文書レベルの感情を適切に推測する。
本稿では,2つの特徴抽出器群,ドメイン識別器群,感情分類器群,ラベル探索器群を包含する新たな相互学習手法を提案する。
論文 参考訳(メタデータ) (2020-02-01T01:22:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。