Light-mediated strong coupling between a mechanical oscillator and
atomic spins one meter apart
- URL: http://arxiv.org/abs/2004.14424v1
- Date: Wed, 29 Apr 2020 18:38:26 GMT
- Title: Light-mediated strong coupling between a mechanical oscillator and
atomic spins one meter apart
- Authors: Thomas M. Karg, Baptiste Gouraud, Chun Tat Ngai, Gian-Luca Schmid,
Klemens Hammerer, and Philipp Treutlein
- Abstract summary: We use a free-space laser beam to strongly couple a collective atomic spin and a micromechanical membrane over a distance of one meter.
The coupling is highly tunable and allows the observation of normal-mode splitting, coherent energy exchange oscillations, two-mode thermal noise squeezing and dissipative coupling.
Our approach to engineer coherent long-distance interactions with light makes it possible to couple very different systems in a modular way, opening up a range of opportunities for quantum control and coherent feedback networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Engineering strong interactions between quantum systems is essential for many
phenomena of quantum physics and technology. Typically, strong coupling relies
on short-range forces or on placing the systems in high-quality electromagnetic
resonators, restricting the range of the coupling to small distances. We use a
free-space laser beam to strongly couple a collective atomic spin and a
micromechanical membrane over a distance of one meter in a room-temperature
environment. The coupling is highly tunable and allows the observation of
normal-mode splitting, coherent energy exchange oscillations, two-mode thermal
noise squeezing and dissipative coupling. Our approach to engineer coherent
long-distance interactions with light makes it possible to couple very
different systems in a modular way, opening up a range of opportunities for
quantum control and coherent feedback networks.
Related papers
- Microwave-optics entanglement via coupled opto- and magnomechanical microspheres [6.9536044259987575]
Microwave-optics entanglement plays a crucial role in building hybrid quantum networks.
We present a new mechanism to prepare microwave-optics entanglement based on a hybrid system of two coupled opto- and magnomechanical microspheres.
arXiv Detail & Related papers (2024-08-07T14:15:55Z) - Strong coupling at room temperature with a centimeter-scale quartz crystal [0.0]
We report an optomechanical system with independent control over pumping power and frequency detuning to achieve and characterize the strong-coupling regime of a bulk acoustic-wave resonator.
Our results provide valuable insights into the performances of room-temperature macroscopic mechanical systems and their applications in hybrid quantum devices.
arXiv Detail & Related papers (2024-05-28T12:15:05Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Longitudinal (curvature) couplings of an $N$-level qudit to a
superconducting resonator at the adiabatic limit and beyond [0.0]
We investigate the coupling between a multi-level system, or qudit, and a superconducting (SC) resonator's electromagnetic field.
For the first time, we derive Hamiltonians describing the longitudinal multi-level interactions in a general dispersive regime.
We provide examples illustrating the transition from adiabatic to dispersive coupling in different qubit systems.
arXiv Detail & Related papers (2023-12-05T20:33:59Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Coherent coupling and non-destructive measurement of trapped-ion mechanical oscillators [0.0]
We show the coherent exchange of single motional quanta between spectrally separated harmonic motional modes of a trapped-ion crystal.
Our work enhances the suitability of trapped-ion motion for continuous-variable quantum computing and error correction.
arXiv Detail & Related papers (2022-05-30T04:04:26Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.