論文の概要: Exploring Contextualized Neural Language Models for Temporal Dependency
Parsing
- arxiv url: http://arxiv.org/abs/2004.14577v2
- Date: Sat, 3 Oct 2020 00:25:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 04:06:48.883993
- Title: Exploring Contextualized Neural Language Models for Temporal Dependency
Parsing
- Title(参考訳): 時間依存構文解析のための文脈付きニューラルネットワークモデルの検討
- Authors: Hayley Ross, Jonathon Cai, Bonan Min
- Abstract要約: BERTは時間依存性解析を大幅に改善することを示す。
また、深く文脈化されたニューラルLMがなぜ役に立ち、どこで不足するかを詳細に分析する。
- 参考スコア(独自算出の注目度): 10.17066263304299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting temporal relations between events and time expressions has many
applications such as constructing event timelines and time-related question
answering. It is a challenging problem which requires syntactic and semantic
information at sentence or discourse levels, which may be captured by deep
contextualized language models (LMs) such as BERT (Devlin et al., 2019). In
this paper, we develop several variants of BERT-based temporal dependency
parser, and show that BERT significantly improves temporal dependency parsing
(Zhang and Xue, 2018a). We also present a detailed analysis on why deep
contextualized neural LMs help and where they may fall short. Source code and
resources are made available at https://github.com/bnmin/tdp_ranking.
- Abstract(参考訳): イベントと時間表現の間の時間関係を抽出するには、イベントタイムラインの構築や時間に関する質問応答など、多くの応用がある。
BERT(Devlin et al., 2019)のような深く文脈化された言語モデル(LM)によって捉えられるかもしれない、文や談話レベルでの統語的・意味的な情報を必要とする難しい問題である。
本稿では,BERTをベースとした時間依存性解析器の開発を行い,時間依存性解析の大幅な改善を示す(Zhang and Xue, 2018a)。
また、深く文脈化されたニューラルLMがなぜ役に立ち、どこで不足するかを詳細に分析する。
ソースコードとリソースはhttps://github.com/bnmin/tdp_rankingで入手できる。
関連論文リスト
- Prompting-based Synthetic Data Generation for Few-Shot Question Answering [23.97949073816028]
大規模言語モデルを用いることで,複数データセットにおける質問応答性能が向上することを示す。
言語モデルには、一般的な事前学習/微調整スキームを超えて使える貴重なタスク非依存の知識が含まれていることを示唆する。
論文 参考訳(メタデータ) (2024-05-15T13:36:43Z) - LITA: Language Instructed Temporal-Localization Assistant [71.68815100776278]
ビデオ長に対してタイムスタンプをエンコードするタイムトークンを導入し,ビデオ中のタイムスタンプをよりよく表現する。
また、アーキテクチャにSlowFastトークンを導入し、微細な時間分解能で時間情報をキャプチャする。
時間的ローカライゼーションに重点を置くことで,既存のビデオLLMに比べて映像ベースのテキスト生成が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-03-27T22:50:48Z) - MRL Parsing Without Tears: The Case of Hebrew [14.104766026682384]
形態的にリッチな言語(MRL)では、トークンごとに複数の語彙単位を識別する必要があるが、既存のシステムはレイテンシとセットアップの複雑さに悩まされている。
決定は、専門家の分類器によって、各ユニットが1つの特定のタスクに特化して行われる。
この信じられないほど高速なアプローチは、HebrewのPOSタグ付けと依存性解析に新しいSOTAを設定し、他のHebrewタスクではほぼSOTAのパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-03-11T17:54:33Z) - Temporal Validity Change Prediction [20.108317515225504]
既存のベンチマークタスクは、1つのステートメントの時間的妥当性を識別するモデルを必要とする。
多くの場合、利用可能なテキストストリームから、ストーリー中の文やソーシャルメディアプロファイル上の投稿などの追加の文脈情報を集めることができる。
本稿では,このような変化を誘発する文脈文を検出する機械学習モデルの能力をベンチマークした自然言語処理タスクである時間的妥当性変化予測を提案する。
論文 参考訳(メタデータ) (2024-01-01T14:58:53Z) - Once Upon a $\textit{Time}$ in $\textit{Graph}$: Relative-Time
Pretraining for Complex Temporal Reasoning [96.03608822291136]
我々は時間の性質を生かし、時間軸に沿った事象の相対的な配置に基づくグラフ構造の構築を提案する。
グラフビューにインスパイアされたRemeMoを提案する。これは2つの文間の時間関係をモデル化することによって、時間的に観察されたすべての事実を明示的に接続する。
実験の結果、RemeMoは複数の時間的質問応答データセット上でベースラインT5よりも優れていた。
論文 参考訳(メタデータ) (2023-10-23T08:49:00Z) - Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating
Generalization Capacity of Language Models [18.874880342410876]
本稿では、時間的推測に焦点を当てた日本のベンチマークであるJampを紹介する。
我々のデータセットには時間的推論パターンが含まれており、きめ細かい分析を行うことができます。
時制フラグメントに基づいてデータセットを分割することにより,単言語/多言語LMの一般化能力を評価する。
論文 参考訳(メタデータ) (2023-06-19T07:00:14Z) - Semantic Parsing for Conversational Question Answering over Knowledge
Graphs [63.939700311269156]
本研究では,ユーザの質問にSparqlパースとアノテートし,システム回答が実行結果に対応するデータセットを開発する。
本稿では,2つの意味解析手法を提案し,その課題を強調した。
私たちのデータセットとモデルはhttps://github.com/Edinburgh/SPICE.orgで公開されています。
論文 参考訳(メタデータ) (2023-01-28T14:45:11Z) - Context-Dependent Semantic Parsing for Temporal Relation Extraction [2.5807659587068534]
テキスト中の時間情報を効果的に抽出するニューラルネットワーク意味表現SMARTERを提案する。
推論フェーズでは、SMARTERは論理形式を実行して時間関係グラフを生成する。
与えられた事象の正確な論理形式表現は、抽出された関係の正確性を保証する。
論文 参考訳(メタデータ) (2021-12-02T00:29:21Z) - GATE: Graph Attention Transformer Encoder for Cross-lingual Relation and
Event Extraction [107.8262586956778]
言語に依存しない文表現を学習するために、普遍的な依存解析を伴うグラフ畳み込みネットワーク(GCN)を導入する。
GCNは、長い範囲の依存関係を持つ単語をモデル化するのに苦労する。
そこで本研究では,構文的距離の異なる単語間の依存関係を学習するための自己認識機構を提案する。
論文 参考訳(メタデータ) (2020-10-06T20:30:35Z) - Temporal Common Sense Acquisition with Minimal Supervision [77.8308414884754]
この研究は、時間的常識の明示的で暗黙的な言及を活用する新しいシーケンスモデリング手法を提案する。
本手法は,時間的共通感覚の様々な次元の質予測を行う。
また、時間比較、親子関係、イベントコア参照、時間的QAなど、関連するタスクに対するイベントの表現も生成する。
論文 参考訳(メタデータ) (2020-05-08T22:20:16Z) - Local-Global Video-Text Interactions for Temporal Grounding [77.5114709695216]
本稿では,テキストクエリに関連するビデオの時間間隔を特定することを目的とした,テキスト間時間グラウンドリングの問題に対処する。
そこで本研究では,テキストクエリにおける意味句の中間レベルの特徴の集合を抽出する,新しい回帰モデルを用いてこの問題に対処する。
提案手法は,ローカルからグローバルへのコンテキスト情報を活用することにより,目標時間間隔を効果的に予測する。
論文 参考訳(メタデータ) (2020-04-16T08:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。