論文の概要: Interpretable Random Forests via Rule Extraction
- arxiv url: http://arxiv.org/abs/2004.14841v4
- Date: Wed, 10 Feb 2021 09:09:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 10:16:43.771365
- Title: Interpretable Random Forests via Rule Extraction
- Title(参考訳): 規則抽出による解釈可能なランダム林
- Authors: Cl\'ement B\'enard (LPSM (UMR\_8001)), G\'erard Biau (LSTA),
S\'ebastien da Veiga, Erwan Scornet (CMAP)
- Abstract要約: 本稿では,ルールの短時間かつ単純なリストの形式を取り入れた,安定なルール学習アルゴリズムであるSIRUSを紹介する。
当社のR/C++ソフトウェア実装サイラスは、CRANから入手可能です。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce SIRUS (Stable and Interpretable RUle Set) for regression, a
stable rule learning algorithm which takes the form of a short and simple list
of rules. State-of-the-art learning algorithms are often referred to as "black
boxes" because of the high number of operations involved in their prediction
process. Despite their powerful predictivity, this lack of interpretability may
be highly restrictive for applications with critical decisions at stake. On the
other hand, algorithms with a simple structure-typically decision trees, rule
algorithms, or sparse linear models-are well known for their instability. This
undesirable feature makes the conclusions of the data analysis unreliable and
turns out to be a strong operational limitation. This motivates the design of
SIRUS, which combines a simple structure with a remarkable stable behavior when
data is perturbed. The algorithm is based on random forests, the predictive
accuracy of which is preserved. We demonstrate the efficiency of the method
both empirically (through experiments) and theoretically (with the proof of its
asymptotic stability). Our R/C++ software implementation sirus is available
from CRAN.
- Abstract(参考訳): SIRUS (Stable and Interpretable RUle Set) は,ルールの短時間かつ単純なリストの形式を取り入れた安定なルール学習アルゴリズムである。
最先端の学習アルゴリズムは、予測プロセスに関わる操作が多すぎるため、しばしば「ブラックボックス」と呼ばれる。
強力な予測性にもかかわらず、この解釈可能性の欠如は、重要な決定を下すアプリケーションにとって非常に限定的である。
一方, 単純な構造決定木, 規則アルゴリズム, スパース線形モデルを持つアルゴリズムは, 不安定性でよく知られている。
この望ましくない機能は、データ分析の結論を信頼できないものにし、運用上の強力な制限となっている。
これは単純な構造とデータの摂動時に顕著な安定した振る舞いを組み合わせたサイラスの設計を動機付ける。
このアルゴリズムはランダムな森林に基づいており、その予測精度は保存されている。
本手法は(実験を通じて)経験的にも理論的にも(漸近安定性の証明とともに)有効性を示す。
我々のR/C++ソフトウェア実装サイラスは、CRANから入手可能です。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Efficiently Learning Probabilistic Logical Models by Cheaply Ranking Mined Rules [9.303501974597548]
我々は、論理規則の精度とリコールを導入し、それらの構成をルールユーティリティとして定義する。
我々は、リレーショナルデータから論理モデルを学ぶためのスケーラブルなフレームワークであるSPECTRUMを紹介する。
論文 参考訳(メタデータ) (2024-09-24T16:54:12Z) - Computationally Efficient RL under Linear Bellman Completeness for Deterministic Dynamics [39.07258580928359]
線形ベルマン完全設定に対する計算的および統計的に効率的な強化学習アルゴリズムについて検討する。
この設定では線形関数近似を用いて値関数をキャプチャし、線形マルコフ決定プロセス(MDP)や線形二次レギュレータ(LQR)のような既存のモデルを統一する。
我々の研究は、線形ベルマン完全設定のための計算効率の良いアルゴリズムを提供し、大きなアクション空間、ランダムな初期状態、ランダムな報酬を持つMDPに対して機能するが、決定論的となる基礎となる力学に依存している。
論文 参考訳(メタデータ) (2024-06-17T17:52:38Z) - Fuzzy Fault Trees Formalized [1.640922391885265]
ファジィ論理は曖昧な値を扱うための一般的なフレームワークである。
本稿では,ファジィ不確実性値に対する厳密な枠組みを定義する。
また,システムのファジィ信頼性を効率的に計算するボトムアップアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-13T14:45:54Z) - Adaptive Experimentation at Scale: A Computational Framework for
Flexible Batches [7.390918770007728]
結果がバッチで測定される少数の実測を含む実例によって動機付けられ,適応駆動型実験フレームワークを開発した。
我々の主な観察は、統計的推論において普遍的な正規近似は適応アルゴリズムの設計を導くことができることである。
論文 参考訳(メタデータ) (2023-03-21T04:17:03Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
非論理的スケジューリングでは、優先度不明な処理条件でジョブをスケジューリングするためのオンライン戦略を見つけることが課題である。
我々はこのよく研究された問題を、アルゴリズム設計に(信頼できない)予測を統合する、最近人気の高い学習強化された設定で再検討する。
これらの予測には所望の特性があり, 高い性能保証を有するアルゴリズムと同様に, 自然な誤差測定が可能であることを示す。
論文 参考訳(メタデータ) (2022-02-21T13:18:11Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
我々は、古典的で有名なオンライングラフ探索問題の学習強化版について研究する。
本稿では,予測をよく知られたNearest Neighbor(NN)アルゴリズムに自然に統合するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-10T10:02:31Z) - Efficient First-Order Contextual Bandits: Prediction, Allocation, and
Triangular Discrimination [82.52105963476703]
統計的学習、オンライン学習、その他における繰り返しのテーマは、低騒音の問題に対してより速い収束率が可能であることである。
1次保証は統計的およびオンライン学習において比較的よく理解されている。
三角識別と呼ばれる対数損失と情報理論量が一階保証を得る上で基本的な役割を担っていることを示す。
論文 参考訳(メタデータ) (2021-07-05T19:20:34Z) - Double Coverage with Machine-Learned Advice [100.23487145400833]
オンラインの基本的な$k$-serverの問題を学習強化環境で研究する。
我々のアルゴリズムは任意の k に対してほぼ最適の一貫性-破壊性トレードオフを達成することを示す。
論文 参考訳(メタデータ) (2021-03-02T11:04:33Z) - Bayes DistNet -- A Robust Neural Network for Algorithm Runtime
Distribution Predictions [1.8275108630751844]
ランダム化アルゴリズムは制約満足度問題 (CSP) やブール満足度問題 (SAT) の多くの最先端の解法で用いられている。
従来の最先端の手法は、入力インスタンスが従う固定パラメトリック分布を直接予測しようとする。
この新モデルは,低観測環境下での堅牢な予測性能と,検閲された観測処理を実現する。
論文 参考訳(メタデータ) (2020-12-14T01:15:39Z) - Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration [143.43658264904863]
我々は、最小二乗値スタイルのアルゴリズムで一般的に使用される、より標準的なベルマン誤差の概念の下での反復が、ほぼ最適値関数の学習において強力なPAC保証を提供することを示す。
そこで本稿では,任意の(線形な)報酬関数に対して,最適に近いポリシーを学習するためにどのように使用できるかを示す。
論文 参考訳(メタデータ) (2020-08-18T04:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。