論文の概要: Hedging and machine learning driven crude oil data analysis using a
refined Barndorff-Nielsen and Shephard model
- arxiv url: http://arxiv.org/abs/2004.14862v3
- Date: Wed, 3 Feb 2021 17:00:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 14:38:28.010338
- Title: Hedging and machine learning driven crude oil data analysis using a
refined Barndorff-Nielsen and Shephard model
- Title(参考訳): Barndorff-NielsenモデルとShephardモデルを用いたヘッジと機械学習による原油データ解析
- Authors: Humayra Shoshi and Indranil SenGupta
- Abstract要約: 本稿では,バーンドルフ・ニールセン・アンド・シェパード(BN-S)モデルを実装し,商品市場に最適なヘッジ戦略を提案する。
この改良により、経験的データセットから決定論的パラメータを抽出する。
洗練されたモデルにおけるこのパラメータの実装により、結果として得られるモデルは古典的なBN-Sモデルよりもはるかに良く機能する。
- 参考スコア(独自算出の注目度): 0.38073142980732994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, a refined Barndorff-Nielsen and Shephard (BN-S) model is
implemented to find an optimal hedging strategy for commodity markets. The
refinement of the BN-S model is obtained with various machine and deep learning
algorithms. The refinement leads to the extraction of a deterministic parameter
from the empirical data set. The problem is transformed to an appropriate
classification problem with a couple of different approaches: the volatility
approach and the duration approach. The analysis is implemented to the Bakken
crude oil data and the aforementioned deterministic parameter is obtained for a
wide range of data sets. With the implementation of this parameter in the
refined model, the resulting model performs much better than the classical BN-S
model.
- Abstract(参考訳): 本稿では,商品市場に最適なヘッジ戦略を見出すため,改良されたBarndorff-Nielsen and Shephard (BN-S)モデルを実装した。
BN-Sモデルの洗練は、様々な機械学習アルゴリズムとディープラーニングアルゴリズムを用いて得られる。
この改良により、経験的データセットから決定論的パラメータを抽出する。
この問題は、揮発性アプローチと持続性アプローチという2つの異なるアプローチで適切な分類問題に変換される。
分析はバッケン原油データに実施され、上記の決定論的パラメータは幅広いデータセットに対して得られる。
洗練されたモデルにおけるこのパラメータの実装により、結果として得られるモデルは古典的なBN-Sモデルよりもはるかに良く機能する。
関連論文リスト
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - A Bayesian Framework on Asymmetric Mixture of Factor Analyser [0.0]
本稿では、スキュー正規(無制限)一般化双曲型(SUNGH)分布のリッチで柔軟なクラスを持つMFAモデルを提案する。
SUNGHファミリーは、様々な方向の歪みをモデル化する柔軟性と、重み付きデータを可能にする。
因子分析モデルを考慮すると、SUNGHファミリーは誤差成分と因子スコアの両方の歪みと重みを許容する。
論文 参考訳(メタデータ) (2022-11-01T20:19:52Z) - Data-Driven Sample Average Approximation with Covariate Information [0.0]
我々は、コパラメトリックの同時観測とともに、最適化モデル内の不確実なパラメータの観測を行う際に、データ駆動意思決定のための最適化について検討する。
本稿では,機械学習予測モデルをプログラムサンプル平均近似(SAA)に組み込んだ3つのデータ駆動フレームワークについて検討する。
論文 参考訳(メタデータ) (2022-07-27T14:45:04Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Learning to Refit for Convex Learning Problems [11.464758257681197]
ニューラルネットワークを用いて、異なるトレーニングセットに対して最適化されたモデルパラメータを推定するフレームワークを提案する。
我々は、凸問題を近似するためにニューラルネットワークのパワーを厳格に特徴づける。
論文 参考訳(メタデータ) (2021-11-24T15:28:50Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z) - Uncertainty Modelling in Risk-averse Supply Chain Systems Using
Multi-objective Pareto Optimization [0.0]
サプライチェーンモデリングにおける困難なタスクの1つは、不規則な変動に対して堅牢なモデルを構築することである。
我々は、不確実性を扱うためのパレート最適化(Pareto Optimization)という新しい手法を導入し、これらの不確実性のエントロピーをアプリオリ仮定の下で明示的にモデル化することで拘束する。
論文 参考訳(メタデータ) (2020-04-24T21:04:25Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
本研究では,本データセットの内在的多次元構造を保持するモデルを開発する。
モデルパラメータを推定するために、オルタネート・リースト・スクエアスアルゴリズムを開発した。
提案モデルは,予測文献に存在するベンチマークモデルより優れている。
論文 参考訳(メタデータ) (2020-02-11T11:57:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。