論文の概要: Attend to Medical Ontologies: Content Selection for Clinical Abstractive
Summarization
- arxiv url: http://arxiv.org/abs/2005.00163v1
- Date: Fri, 1 May 2020 01:12:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 23:27:18.118374
- Title: Attend to Medical Ontologies: Content Selection for Clinical Abstractive
Summarization
- Title(参考訳): 医学オントロジーへの期待:臨床抽象的要約のためのコンテンツ選択
- Authors: Sajad Sotudeh and Nazli Goharian and Ross W. Filice
- Abstract要約: シークエンス・ツー・シーケンス(seq2seq)ネットワークは、テキスト要約タスクのための確立されたモデルである。
本稿では,臨床抽象的要約のためのコンテンツ選択問題に対して,有能な存在論的用語を要約器に拡張することでアプローチする。
- 参考スコア(独自算出の注目度): 22.062385543743293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequence-to-sequence (seq2seq) network is a well-established model for text
summarization task. It can learn to produce readable content; however, it falls
short in effectively identifying key regions of the source. In this paper, we
approach the content selection problem for clinical abstractive summarization
by augmenting salient ontological terms into the summarizer. Our experiments on
two publicly available clinical data sets (107,372 reports of MIMIC-CXR, and
3,366 reports of OpenI) show that our model statistically significantly boosts
state-of-the-art results in terms of Rouge metrics (with improvements: 2.9%
RG-1, 2.5% RG-2, 1.9% RG-L), in the healthcare domain where any range of
improvement impacts patients' welfare.
- Abstract(参考訳): sequence-to-sequence (seq2seq) ネットワークはテキスト要約タスクのための確立されたモデルである。
可読性のあるコンテンツを作成することを学べるが、ソースの重要な領域を効果的に識別することは困難である。
本稿では,臨床抽象的要約のためのコンテンツ選択問題に対して,有能な存在論的用語を要約器に拡張することでアプローチする。
公衆に入手可能な2つの臨床データセット(muse-cxrの107,372報告、openiの3,366報告)に関する実験では、このモデルがルージュ指標(改善点:2.9% rg-1,2.5% rg-2,1.9% rg-l)によって、患者の福祉に影響を及ぼす医療領域において、統計的に最先端の結果が著しく向上していることが示されました。
関連論文リスト
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - CORAL: Expert-Curated medical Oncology Reports to Advance Language Model
Inference [2.1067045507411195]
大規模言語モデル(LLM)は、最近、様々な医学自然言語処理タスクにおいて印象的なパフォーマンスを示した。
そこで我々は, 患者の特徴, 腫瘍の特徴, 検査, 治療, 時間性などを含む, テキストオンコロジー情報に注釈を付けるための詳細なスキーマを開発した。
GPT-4モデルでは、BLEUスコアが平均0.73、ROUGEスコアが平均0.72、F1スコアが0.51、複雑なタスクが平均68%であった。
論文 参考訳(メタデータ) (2023-08-07T18:03:10Z) - A Marker-based Neural Network System for Extracting Social Determinants
of Health [12.6970199179668]
健康の社会的決定因子(SDoH)は、患者の医療の質と格差を左右する。
多くのSDoHアイテムは、電子健康記録の構造化形式でコード化されていない。
我々は,臨床ノートから自動的にSDoH情報を抽出する,名前付きエンティティ認識(NER),関係分類(RC),テキスト分類手法を含む多段階パイプラインを探索する。
論文 参考訳(メタデータ) (2022-12-24T18:40:23Z) - MAPPING: Model Average with Post-processing for Stroke Lesion
Segmentation [57.336056469276585]
我々は nnU-Net フレームワークに基づく脳卒中病変のセグメンテーションモデルを提案し, ストローク後の解剖学的トレースに応用する。
本手法は,2022年のMICCAI ATLAS Challengeにおいて,平均Diceスコアが0.6667,Lesion-wise F1スコアが0.5643,Simple Lesion Countスコアが4.5367,Volume differenceスコアが8804.9102であった。
論文 参考訳(メタデータ) (2022-11-11T14:17:04Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - Improving the Factual Accuracy of Abstractive Clinical Text
Summarization using Multi-Objective Optimization [3.977582258550673]
本稿では,知識誘導多目的最適化を用いた臨床テキストの抽象的要約の事実的精度向上のためのフレームワークを提案する。
本研究では,知識誘導多目的最適化を用いた臨床テキストの抽象的要約の事実的精度向上のための枠組みを提案する。
論文 参考訳(メタデータ) (2022-04-02T07:59:28Z) - Differentiable Multi-Agent Actor-Critic for Multi-Step Radiology Report
Summarization [5.234281904315526]
放射線医学報告のIpressionIONSセクションは、放射線技師の推論と結論の要約である。
放射線学レポートの要約に関する以前の研究は、単一段階のエンドツーエンドモデルに焦点が当てられていた。
抽出的要約と抽象的要約という2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-15T21:18:09Z) - Event-based clinical findings extraction from radiology reports with
pre-trained language model [0.22940141855172028]
今回,臨床所見を付加した新しい放射線診断報告のコーパスを報告する。
金の標準コーパスには合計500点の注記CTレポートが含まれていた。
BERTを含む2つの最先端ディープラーニングアーキテクチャを用いて、トリガと引数のエンティティを抽出した。
論文 参考訳(メタデータ) (2021-12-27T05:03:10Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
3次元医用画像分割作業において,Deep Learning (DL) 手法を体系的に評価した。
本手法は放射線外科治療プロセスに統合され,臨床ワークフローに直接影響を及ぼす。
論文 参考訳(メタデータ) (2021-08-21T16:15:40Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - IA-GCN: Interpretable Attention based Graph Convolutional Network for
Disease prediction [47.999621481852266]
タスクに対する入力特徴の臨床的関連性を解釈する,解釈可能なグラフ学習モデルを提案する。
臨床シナリオでは、そのようなモデルは、臨床専門家が診断および治療計画のためのより良い意思決定を支援することができる。
本研究では,Tadpoleの平均精度が3.2%,UKBBジェンダーが1.6%,UKBB年齢予測タスクが2%と,比較方法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2021-03-29T13:04:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。