論文の概要: CSTRL: Context-Driven Sequential Transfer Learning for Abstractive Radiology Report Summarization
- arxiv url: http://arxiv.org/abs/2503.05750v1
- Date: Fri, 21 Feb 2025 08:32:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 09:17:33.497604
- Title: CSTRL: Context-Driven Sequential Transfer Learning for Abstractive Radiology Report Summarization
- Title(参考訳): CSTRL: 抽象的放射線学レポート要約のための文脈駆動型シーケンス転送学習
- Authors: Mst. Fahmida Sultana Naznin, Adnan Ibney Faruq, Mostafa Rifat Tazwar, Md Jobayer, Md. Mehedi Hasan Shawon, Md Rakibul Hasan,
- Abstract要約: 放射線学報告は、診断の発見と印象を含むいくつかのセクションから構成される。
共通の抽象的な要約問題に優れた事前学習モデルは、専門の医療領域に適用した場合に困難に直面する。
キーコンテンツ抽出とコヒーレント要約を保証するシーケンシャルトランスファー学習を導入する。
- 参考スコア(独自算出の注目度): 0.37109226820205005
- License:
- Abstract: A radiology report comprises several sections, including the Findings and Impression of the diagnosis. Automatically generating the Impression from the Findings is crucial for reducing radiologists' workload and improving diagnostic accuracy. Pretrained models that excel in common abstractive summarization problems encounter challenges when applied to specialized medical domains largely due to the complex terminology and the necessity for accurate clinical context. Such tasks in medical domains demand extracting core information, avoiding context shifts, and maintaining proper flow. Misuse of medical terms can lead to drastic clinical errors. To address these issues, we introduce a sequential transfer learning that ensures key content extraction and coherent summarization. Sequential transfer learning often faces challenges like initial parameter decay and knowledge loss, which we resolve with the Fisher matrix regularization. Using MIMIC-CXR and Open-I datasets, our model, CSTRL-Context-driven Sequential TRansfer Learning-achieved state-of-the-art performance, showing 56.2% improvement in BLEU-1, 40.5% in BLEU-2, 84.3% in BLEU-3, 28.9% in ROUGE-1, 41.0% in ROUGE-2 and 26.5% in ROGUE-3 score over benchmark studies. We also analyze factual consistency scores while preserving the medical context. Our code is publicly available at TBA.
- Abstract(参考訳): 放射線学報告は、診断の発見と印象を含むいくつかのセクションから構成される。
FindingsからImpressionを自動生成することは、放射線医の作業量を減らし、診断精度を向上させるために重要である。
共通の抽象的要約問題に優れている事前学習モデルは、複雑な用語と正確な臨床コンテキストの必要性から、専門の医療領域に適用する場合に困難に直面する。
医療領域におけるそのようなタスクは、コア情報を抽出し、コンテキストシフトを回避し、適切なフローを維持することを要求する。
医療用語の誤用は、劇的な臨床ミスにつながる可能性がある。
これらの問題に対処するために、キーコンテンツ抽出とコヒーレント要約を保証するシーケンシャルトランスファー学習を導入する。
シークエンシャル・トランスファー・ラーニングは、初期パラメータの減衰や知識損失といった課題に直面することが多く、フィッシャー行列正則化で解決する。
MIMIC-CXRとOpen-Iデータセットを用いて、我々のモデルであるCSTRL-Context-driven Sequential TRansfer Learning-achieved State-the-art Performanceは、BLEU-1が56.2%、BLEU-2が40.5%、BLEU-3が84.3%、ROUGE-1が28.9%、ROUGE-2が41.0%、ROGUE-3が26.5%改善している。
また,医学的文脈を保ちながら,事実整合性のスコアも分析した。
私たちのコードはTBAで公開されています。
関連論文リスト
- A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge [30.611482996378683]
画像と疾患の多様性は、臨床価値を持つ一般化可能なAIアルゴリズムの開発を妨げる。
2022 Ischemic Stroke Lesion (ISLES) から得られた新しいアンサンブルアルゴリズムを提案する。
トップパフォーマンスのアルゴリズムを、個々のソリューションの限界を克服するアンサンブルモデルに組み合わせました。
論文 参考訳(メタデータ) (2024-03-28T13:56:26Z) - CORAL: Expert-Curated medical Oncology Reports to Advance Language Model
Inference [2.1067045507411195]
大規模言語モデル(LLM)は、最近、様々な医学自然言語処理タスクにおいて印象的なパフォーマンスを示した。
そこで我々は, 患者の特徴, 腫瘍の特徴, 検査, 治療, 時間性などを含む, テキストオンコロジー情報に注釈を付けるための詳細なスキーマを開発した。
GPT-4モデルでは、BLEUスコアが平均0.73、ROUGEスコアが平均0.72、F1スコアが0.51、複雑なタスクが平均68%であった。
論文 参考訳(メタデータ) (2023-08-07T18:03:10Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Instrumental Variable Learning for Chest X-ray Classification [52.68170685918908]
本稿では,素因果関係を排除し,正確な因果表現を得るための解釈可能な機器変数(IV)学習フレームワークを提案する。
提案手法の性能はMIMIC-CXR,NIH ChestX-ray 14,CheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-05-20T03:12:23Z) - MedDistant19: A Challenging Benchmark for Distantly Supervised
Biomedical Relation Extraction [19.046156065686308]
遠隔監視は、注釈付きデータの不足に対処するために一般的に使用される。
バイオDSREモデルは、いくつかのベンチマークで非常に正確な結果が得られるように見える。
しかし,タスクの難易度を考慮し,このような印象的な結果の有効性について検討した。
論文 参考訳(メタデータ) (2022-04-10T22:07:25Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - A Systematic Review of Natural Language Processing Applied to Radiology
Reports [3.600747505433814]
本研究は, 放射線学報告に応用されたNLPの最近の文献を体系的に評価する。
本研究は, 放射線学的特徴, nlp法, 性能, 研究, 臨床応用特性を含む21の変数に基づく。
論文 参考訳(メタデータ) (2021-02-18T18:54:41Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - Attend to Medical Ontologies: Content Selection for Clinical Abstractive
Summarization [22.062385543743293]
シークエンス・ツー・シーケンス(seq2seq)ネットワークは、テキスト要約タスクのための確立されたモデルである。
本稿では,臨床抽象的要約のためのコンテンツ選択問題に対して,有能な存在論的用語を要約器に拡張することでアプローチする。
論文 参考訳(メタデータ) (2020-05-01T01:12:49Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。