Quantum Thermodynamics
- URL: http://arxiv.org/abs/2406.19206v1
- Date: Thu, 27 Jun 2024 14:28:35 GMT
- Title: Quantum Thermodynamics
- Authors: Patrick P. Potts,
- Abstract summary: Theory of quantum thermodynamics investigates how the concepts of heat, work, and temperature can be carried over to the quantum realm.
Lecture notes provide an introduction to the thermodynamics of small quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The theory of quantum thermodynamics investigates how the concepts of heat, work, and temperature can be carried over to the quantum realm, where fluctuations and randomness are fundamentally unavoidable. These lecture notes provide an introduction to the thermodynamics of small quantum systems. It is illustrated how the laws of thermodynamics emerge from quantum theory and how open quantum systems can be modeled by Markovian master equations. Quantum systems that are designed to perform a certain task, such as cooling or generating entanglement are considered. Finally, the effect of fluctuations on the thermodynamic description is discussed.
Related papers
- Quantum Thermodynamics in Spin Systems: A Review of Cycles and Applications [0.0]
Quantum thermodynamics is a powerful theoretical tool for assessing the suitability of quantum materials as platforms for novel technologies.
In this Review, we cover the mathematical formulation used to model the quantum thermodynamic behavior of small-scale systems.
We discuss theoretical results obtained after applying this approach to model Heisenberg-like spin systems.
arXiv Detail & Related papers (2024-11-19T12:51:32Z) - Quantum Computers, Quantum Computing and Quantum Thermodynamics [0.0]
Quantum thermodynamics aims at extending standard thermodynamics to systems with sizes well below the thermodynamic limit.
A rapidly evolving research field, which promises to change our understanding of the foundations of physics.
arXiv Detail & Related papers (2024-04-15T10:53:13Z) - Unification of the first law of quantum thermodynamics [0.0]
Underlying the classical thermodynamic principles are analogous microscopic laws, arising from the fundamental axioms of quantum mechanics.
The foremost quantum thermodynamic law is a simple statement concerning the conservation of energy.
There exist ambiguity and disagreement regarding the precise partition of a quantum system's energy change to work and heat.
arXiv Detail & Related papers (2022-08-22T19:36:41Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Gauge invariant quantum thermodynamics: consequences for the first law [0.0]
Information theory plays a major role in the identification of thermodynamic functions.
We explicitly construct physically motivated gauge transformations which encode a gentle variant of coarse-graining behind thermodynamics.
As a consequence, we reinterpret quantum work and heat, as well as the role of quantum coherence.
arXiv Detail & Related papers (2021-04-20T17:53:16Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Probabilistically Violating the First Law of Thermodynamics in a Quantum
Heat Engine [0.0]
We show that in the presence of quantum fluctuations, the first law of thermodynamics may break down.
This happens because quantum mechanics imposes constraints on the knowledge of heat and work.
Our results imply that in the presence of quantum fluctuations, the first law of thermodynamics may not be applicable to individual experimental runs.
arXiv Detail & Related papers (2021-02-02T09:23:21Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.