論文の概要: Can a powerful neural network be a teacher for a weaker neural network?
- arxiv url: http://arxiv.org/abs/2005.00393v2
- Date: Thu, 7 May 2020 07:47:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 23:09:23.204297
- Title: Can a powerful neural network be a teacher for a weaker neural network?
- Title(参考訳): 強力なニューラルネットワークは、より弱いニューラルネットワークの教師になれるか?
- Authors: Nicola Landro and Ignazio Gallo and Riccardo La Grassa
- Abstract要約: 学習プロセスがより強力なニューラルネットワークによって駆動される場合、弱いニューラルネットワークは、その性能を向上させることができることを示す。
本研究では、弱いネットワークが学習しようとする特徴と、強いニューラルネットワークから以前に学んだ特徴との距離を最小化する損失関数を追加する。
- 参考スコア(独自算出の注目度): 0.9569316316728905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The transfer learning technique is widely used to learning in one context and
applying it to another, i.e. the capacity to apply acquired knowledge and
skills to new situations. But is it possible to transfer the learning from a
deep neural network to a weaker neural network? Is it possible to improve the
performance of a weak neural network using the knowledge acquired by a more
powerful neural network? In this work, during the training process of a weak
network, we add a loss function that minimizes the distance between the
features previously learned from a strong neural network with the features that
the weak network must try to learn. To demonstrate the effectiveness and
robustness of our approach, we conducted a large number of experiments using
three known datasets and demonstrated that a weak neural network can increase
its performance if its learning process is driven by a more powerful neural
network.
- Abstract(参考訳): 伝達学習技術は、ある文脈で学習し、別の状況、すなわち獲得した知識とスキルを新しい状況に適用する能力に広く用いられている。
しかし、深層ニューラルネットワークから弱いニューラルネットワークへの学習の転送は可能だろうか?
より強力なニューラルネットワークが獲得した知識を使って、弱いニューラルネットワークの性能を改善することは可能か?
本研究では,弱ネットワークの学習過程において,弱ネットワークが学習しなければならない特徴を持つ強ニューラルネットワークから学習した特徴間の距離を最小化する損失関数を付加する。
提案手法の有効性とロバスト性を示すために,3つの既知のデータセットを用いた多数の実験を行い,学習プロセスがより強力なニューラルネットワークによって駆動される場合,弱いニューラルネットワークがその性能を向上させることを実証した。
関連論文リスト
- Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
この問題の潜在的な解決策はNeuro-Symbolic Integration (NeSy)であり、ニューラルアプローチとシンボリック推論を組み合わせる。
これらの手法のほとんどは、認識をシンボルにマッピングするニューラルネットワークと、下流タスクの出力を予測する論理的論理的推論を利用する。
それらは、緩やかな収束、複雑な知覚タスクの学習困難、局所的なミニマへの収束など、いくつかの問題に悩まされている。
本稿では,これらの問題を改善するための簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-02-21T15:51:01Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Deep Learning Meets Sparse Regularization: A Signal Processing
Perspective [17.12783792226575]
データに適合するように訓練されたニューラルネットワークの機能特性を特徴付ける数学的枠組みを提案する。
このフレームワークをサポートする主要な数学的ツールは、変換領域スパース正規化、計算トモグラフィーのラドン変換、近似理論である。
このフレームワークは、ニューラルネットワークトレーニングにおける重量減衰正則化の効果、ネットワークアーキテクチャにおけるスキップ接続と低ランク重量行列の使用、ニューラルネットワークにおける空間性の役割、そしてニューラルネットワークが高次元問題でうまく機能する理由を説明する。
論文 参考訳(メタデータ) (2023-01-23T17:16:21Z) - Functional Connectome: Approximating Brain Networks with Artificial
Neural Networks [1.952097552284465]
訓練されたディープニューラルネットワークは、合成生物学的ネットワークによって実行される計算を高精度に捉えることができることを示す。
訓練されたディープニューラルネットワークは、新しい環境でゼロショットの一般化を実行可能であることを示す。
本研究は, システム神経科学における新規かつ有望な方向性を明らかにする。
論文 参考訳(メタデータ) (2022-11-23T13:12:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
本稿では,ニューラルネットワークの誤予測の原因となる,人間の認識可能な情報を含む対人摂動について述べる。
この人間の認識可能な情報の概念は、敵の摂動に関連する重要な特徴を説明できる。
論文 参考訳(メタデータ) (2022-05-30T18:04:57Z) - How and what to learn:The modes of machine learning [7.085027463060304]
本稿では, 重み経路解析(WPA)と呼ばれる新しい手法を提案し, 多層ニューラルネットワークのメカニズムについて検討する。
WPAは、ニューラルネットワークが情報を「ホログラフィック」な方法で保存し、活用していることを示し、ネットワークはすべてのトレーニングサンプルをコヒーレントな構造にエンコードする。
隠れた層状ニューロンは学習過程の後半で異なるクラスに自己組織化することが判明した。
論文 参考訳(メタデータ) (2022-02-28T14:39:06Z) - Deep Spiking Convolutional Neural Network for Single Object Localization
Based On Deep Continuous Local Learning [0.0]
グレースケール画像における単一物体の局所化のための深部畳み込みスパイクニューラルネットワークを提案する。
Oxford-IIIT-Petで報告された結果は、教師付き学習アプローチによるスパイクニューラルネットワークの活用を検証する。
論文 参考訳(メタデータ) (2021-05-12T12:02:05Z) - The Connection Between Approximation, Depth Separation and Learnability
in Neural Networks [70.55686685872008]
学習可能性と近似能力の関係について検討する。
対象関数の深いネットワークでの学習性は、より単純なクラスがターゲットを近似する能力に依存することを示す。
論文 参考訳(メタデータ) (2021-01-31T11:32:30Z) - Artificial Neural Variability for Deep Learning: On Overfitting, Noise
Memorization, and Catastrophic Forgetting [135.0863818867184]
人工ニューラルネットワーク(ANV)は、ニューラルネットワークが自然のニューラルネットワークからいくつかの利点を学ぶのに役立つ。
ANVは、トレーニングデータと学習モデルの間の相互情報の暗黙の正則化として機能する。
過度にフィットし、ノイズの記憶をラベル付けし、無視できるコストで破滅的な忘れを効果的に軽減することができる。
論文 参考訳(メタデータ) (2020-11-12T06:06:33Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。