論文の概要: Improving Broad-Coverage Medical Entity Linking with Semantic Type
Prediction and Large-Scale Datasets
- arxiv url: http://arxiv.org/abs/2005.00460v4
- Date: Sun, 22 Aug 2021 06:53:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 23:45:07.777846
- Title: Improving Broad-Coverage Medical Entity Linking with Semantic Type
Prediction and Large-Scale Datasets
- Title(参考訳): セマンティック型予測と大規模データセットによる広域医療エンティティリンクの改善
- Authors: Shikhar Vashishth, Denis Newman-Griffis, Rishabh Joshi, Ritam Dutt,
Carolyn Rose
- Abstract要約: MedTypeは完全にモジュール化されたシステムで、エンティティ参照の予測されたセマンティックタイプに基づいて、無関係な候補概念を抽出する。
我々は、データセットをリンクする大規模医療機関であるWikiMedとPubMedDSを紹介し、これらのデータセット上でMedTypeを事前学習することで、エンティティリンク性能がさらに向上することを示す。
- 参考スコア(独自算出の注目度): 12.131050765159145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical entity linking is the task of identifying and standardizing medical
concepts referred to in an unstructured text. Most of the existing methods
adopt a three-step approach of (1) detecting mentions, (2) generating a list of
candidate concepts, and finally (3) picking the best concept among them. In
this paper, we probe into alleviating the problem of overgeneration of
candidate concepts in the candidate generation module, the most under-studied
component of medical entity linking. For this, we present MedType, a fully
modular system that prunes out irrelevant candidate concepts based on the
predicted semantic type of an entity mention. We incorporate MedType into five
off-the-shelf toolkits for medical entity linking and demonstrate that it
consistently improves entity linking performance across several benchmark
datasets. To address the dearth of annotated training data for medical entity
linking, we present WikiMed and PubMedDS, two large-scale medical entity
linking datasets, and demonstrate that pre-training MedType on these datasets
further improves entity linking performance. We make our source code and
datasets publicly available for medical entity linking research.
- Abstract(参考訳): 医療エンティティリンク(medical entity link)は、非構造化テキストで言及される医療概念を識別し、標準化するタスクである。
既存の手法のほとんどは,(1)言及の検出,(2)候補概念の一覧の作成,(3)最良概念の選定という3段階のアプローチを採用している。
本稿では,医療機関リンクの最も未研究の要素である候補生成モジュールにおける候補概念のオーバージェネレーションの問題について検討する。
そこで我々は,エンティティ参照の予測意味型に基づいて,無関係な候補概念を探索する完全モジュラーシステムであるmedtypeを提案する。
我々は、MedTypeを医療エンティティリンクのための5つの既製のツールキットに統合し、いくつかのベンチマークデータセットにおけるエンティティリンク性能が一貫して改善されていることを示す。
医療機関リンクのための注釈付きトレーニングデータの変形に対処するため、データセットをリンクする大規模医療機関であるWikiMedとPubMedDSを提示し、これらのデータセット上でMedTypeを事前学習することで、エンティティリンク性能がさらに向上することを示した。
ソースコードとデータセットを医療機関のリンク研究のために公開しています。
関連論文リスト
- Efficient Biomedical Entity Linking: Clinical Text Standardization with Low-Resource Techniques [0.0]
複数の用語は、臨床エンティティと呼ばれることができる同じコア概念を参照することができる。
UMLS(Unified Medical Language System)のようなオントロジーは、何百万もの臨床エンティティを格納するために開発・維持されている。
そこで本稿では,エンティティの曖昧さを解消するために,コンテキストベースとコンテキストレスの省力化手法を提案する。
論文 参考訳(メタデータ) (2024-05-24T01:14:33Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - Biomedical Entity Linking as Multiple Choice Question Answering [48.74212158495695]
本稿では,バイオメディカルエンティティリンクを複数問合せ回答として扱う新モデルであるBioELQAを提案する。
まず、高速検索器を用いて候補エンティティを取得し、生成器に参照と候補エンティティを共同で提示し、選択したエンティティに関連付けられた予測シンボルを出力する。
長い尾を持つエンティティの一般化を改善するため、類似したラベル付きトレーニングインスタンスを手がかりとして検索し、ジェネレータの検索インスタンスで入力する。
論文 参考訳(メタデータ) (2024-02-23T08:40:38Z) - Zero-Shot Medical Information Retrieval via Knowledge Graph Embedding [27.14794371879541]
本稿では、ゼロショット医療情報検索(MIR)の新しいアプローチであるMedFusionRankを紹介する。
提案手法は、学習済みのBERTスタイルのモデルを用いて、コンパクトだが情報的なキーワードを抽出する。
これらのキーワードは、医療知識グラフ内の概念エンティティにリンクすることで、ドメイン知識に富む。
論文 参考訳(メタデータ) (2023-10-31T16:26:33Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
本論文は,生物医学領域の概念とそれらの関連性を記述するオントロジーであるEBOCAと,それらの関連性を支持するエビデンスを提案する。
DISNETのサブセットから得られるテストデータとテキストからの自動アソシエーション抽出が変換され、実際のシナリオで使用できる知識グラフが作成されるようになった。
論文 参考訳(メタデータ) (2022-08-01T18:47:03Z) - Fast and Effective Biomedical Entity Linking Using a Dual Encoder [48.86736921025866]
文書中の複数の言及を1ショットで解決するBERTベースのデュアルエンコーダモデルを提案する。
本稿では,提案モデルが既存のBERTモデルよりも複数倍高速であり,バイオメディカルエンティティリンクの精度に競争力があることを示す。
論文 参考訳(メタデータ) (2021-03-08T19:32:28Z) - Medical Entity Linking using Triplet Network [7.18342554344254]
本稿では,病名と類似性に基づく知識ベース候補のランク付け手法を提案する。
手作りのルールを利用しない、堅牢でポータブルな候補生成方式を紹介します。
標準ベンチマークNCBIデータセットによる実験結果から,本システムでは従来手法よりも有意差が認められた。
論文 参考訳(メタデータ) (2020-12-21T07:44:37Z) - Clustering-based Inference for Biomedical Entity Linking [40.78384867437563]
本稿では,リンク決定を知識ベースエンティティにリンクするだけでなく,クラスタリングを通じて複数の言及をまとめてグループ化し,リンク予測を共同で行うモデルを提案する。
公開可能な最大のバイオメディカルデータセットの実験では、エンティティリンクの最良の独立予測を3.0ポイント精度で改善する。
論文 参考訳(メタデータ) (2020-10-21T19:16:27Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
MedDGという12種類の消化器疾患に関連する大規模医用対話データセットを構築し,公開する。
MedDGデータセットに基づく2種類の医療対話タスクを提案する。1つは次のエンティティ予測であり、もう1つは医師の反応生成である。
実験結果から,プレトレイン言語モデルと他のベースラインは,両方のタスクに苦戦し,データセットの性能が劣ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T03:34:33Z) - COMETA: A Corpus for Medical Entity Linking in the Social Media [27.13349965075764]
われわれは、Redditの専門家がSNOMED CTへのリンクを付加した20万の英語バイオメディカルエンティティからなるCOMETAという新しいコーパスを紹介した。
私たちのコーパスは、スケールとカバレッジから多様性と品質まで、望ましい特性の組み合わせを満足しています。
2つの挑戦的な評価シナリオの下で、エンティティや概念に関する複雑な推論を行うことのできる、これらのシステムの能力に光を当てた。
論文 参考訳(メタデータ) (2020-10-07T09:16:45Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
コンテキスト談話ベクトル(英: Contextual Discourse Vectors、CDV)は、長文からの効率的な回答検索のための分散文書表現である。
本モデルでは,階層型LSTMレイヤとマルチタスクトレーニングを併用したデュアルエンコーダアーキテクチャを用いて,臨床エンティティの位置と文書の談話に沿った側面をエンコードする。
我々の一般化モデルは、医療パスランキングにおいて、最先端のベースラインを著しく上回っていることを示す。
論文 参考訳(メタデータ) (2020-02-03T15:47:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。