Robust and Interpretable Grounding of Spatial References with Relation
Networks
- URL: http://arxiv.org/abs/2005.00696v2
- Date: Wed, 7 Oct 2020 04:05:00 GMT
- Title: Robust and Interpretable Grounding of Spatial References with Relation
Networks
- Authors: Tsung-Yen Yang and Andrew S. Lan and Karthik Narasimhan
- Abstract summary: Learning representations of spatial references in natural language is a key challenge in tasks like autonomous navigation and robotic manipulation.
Recent work has investigated various neural architectures for learning multi-modal representations for spatial concepts.
We develop effective models for understanding spatial references in text that are robust and interpretable.
- Score: 40.42540299023808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning representations of spatial references in natural language is a key
challenge in tasks like autonomous navigation and robotic manipulation. Recent
work has investigated various neural architectures for learning multi-modal
representations for spatial concepts. However, the lack of explicit reasoning
over entities makes such approaches vulnerable to noise in input text or state
observations. In this paper, we develop effective models for understanding
spatial references in text that are robust and interpretable, without
sacrificing performance. We design a text-conditioned \textit{relation network}
whose parameters are dynamically computed with a cross-modal attention module
to capture fine-grained spatial relations between entities. This design choice
provides interpretability of learned intermediate outputs. Experiments across
three tasks demonstrate that our model achieves superior performance, with a
17\% improvement in predicting goal locations and a 15\% improvement in
robustness compared to state-of-the-art systems.
Related papers
- Structured Spatial Reasoning with Open Vocabulary Object Detectors [2.089191490381739]
Reasoning about spatial relationships between objects is essential for many real-world robotic tasks.
We introduce a structured probabilistic approach that integrates rich 3D geometric features with state-of-the-art open-vocabulary object detectors.
The approach is evaluated and compared against zero-shot performance of the state-of-the-art Vision and Language Models (VLMs) on spatial reasoning tasks.
arXiv Detail & Related papers (2024-10-09T19:37:01Z) - Disentangling Dense Embeddings with Sparse Autoencoders [0.0]
Sparse autoencoders (SAEs) have shown promise in extracting interpretable features from complex neural networks.
We present one of the first applications of SAEs to dense text embeddings from large language models.
We show that the resulting sparse representations maintain semantic fidelity while offering interpretability.
arXiv Detail & Related papers (2024-08-01T15:46:22Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
The black-box structure of the deep neural network in pre-trained language models seriously limits the interpretability of the language modeling process.
A Word-Context-Coupled Space (W2CSpace) is proposed by introducing the alignment processing between uninterpretable neural representation and interpretable statistical logic.
Our language model can achieve better performance and highly credible interpretable ability compared to related state-of-the-art methods.
arXiv Detail & Related papers (2023-05-19T09:26:02Z) - Learning Semantic Textual Similarity via Topic-informed Discrete Latent
Variables [17.57873577962635]
We develop a topic-informed discrete latent variable model for semantic textual similarity.
Our model learns a shared latent space for sentence-pair representation via vector quantization.
We show that our model is able to surpass several strong neural baselines in semantic textual similarity tasks.
arXiv Detail & Related papers (2022-11-07T15:09:58Z) - SUN: Exploring Intrinsic Uncertainties in Text-to-SQL Parsers [61.48159785138462]
This paper aims to improve the performance of text-to-dependence by exploring the intrinsic uncertainties in the neural network based approaches (called SUN)
Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms competitors and achieves new state-of-the-art results.
arXiv Detail & Related papers (2022-09-14T06:27:51Z) - Compositional Generalization in Grounded Language Learning via Induced
Model Sparsity [81.38804205212425]
We consider simple language-conditioned navigation problems in a grid world environment with disentangled observations.
We design an agent that encourages sparse correlations between words in the instruction and attributes of objects, composing them together to find the goal.
Our agent maintains a high level of performance on goals containing novel combinations of properties even when learning from a handful of demonstrations.
arXiv Detail & Related papers (2022-07-06T08:46:27Z) - Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance [55.10864476206503]
We investigate the use of quantized vectors to model the latent linguistic embedding.
By enforcing different policies over the latent spaces in the training, we are able to obtain a latent linguistic embedding.
Our experiments show that the voice cloning system built with vector quantization has only a small degradation in terms of perceptive evaluations.
arXiv Detail & Related papers (2021-06-25T07:51:35Z) - Multiple Object Tracking with Correlation Learning [16.959379957515974]
We propose to exploit the local correlation module to model the topological relationship between targets and their surrounding environment.
Specifically, we establish dense correspondences of each spatial location and its context, and explicitly constrain the correlation volumes through self-supervised learning.
Our approach demonstrates the effectiveness of correlation learning with the superior performance and obtains state-of-the-art MOTA of 76.5% and IDF1 of 73.6% on MOT17.
arXiv Detail & Related papers (2021-04-08T06:48:02Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.