論文の概要: Attention-based Graph ResNet for Motor Intent Detection from Raw EEG
signals
- arxiv url: http://arxiv.org/abs/2007.13484v1
- Date: Thu, 25 Jun 2020 09:29:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 02:56:08.866528
- Title: Attention-based Graph ResNet for Motor Intent Detection from Raw EEG
signals
- Title(参考訳): 注意に基づく脳波信号からの運動インテント検出用グラフResNet
- Authors: Shuyue Jia, Yimin Hou, Yan Shi, Yang Li
- Abstract要約: 前回の研究では、脳波(EEG)信号は脳波電極のトポロジカルな関係を考慮していない。
グラフ畳み込みニューラルネットワーク(GCN: Graph Convolutional Neural Network)の新たな構造である、注意に基づくグラフ残差ネットワークが、人間の運動意図を検出するために提示された。
生の脳波運動画像における深部ネットワークに関する劣化問題に対処するために, フルアテンションアーキテクチャによる深部学習を導入した。
- 参考スコア(独自算出の注目度): 8.775745069873558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In previous studies, decoding electroencephalography (EEG) signals has not
considered the topological relationship of EEG electrodes. However, the latest
neuroscience has suggested brain network connectivity. Thus, the exhibited
interaction between EEG channels might not be appropriately measured via
Euclidean distance. To fill the gap, an attention-based graph residual network,
a novel structure of Graph Convolutional Neural Network (GCN), was presented to
detect human motor intents from raw EEG signals, where the topological
structure of EEG electrodes was built as a graph. Meanwhile, deep residual
learning with a full-attention architecture was introduced to address the
degradation problem concerning deeper networks in raw EEG motor imagery (MI)
data. Individual variability, the critical and longstanding challenge
underlying EEG signals, has been successfully handled with the state-of-the-art
performance, 98.08% accuracy at the subject level, 94.28% for 20 subjects.
Numerical results were promising that the implementation of the
graph-structured topology was superior to decode raw EEG data. The innovative
deep learning approach was expected to entail a universal method towards both
neuroscience research and real-world EEG-based practical applications, e.g.,
seizure prediction.
- Abstract(参考訳): 前回の研究では、脳波(EEG)信号は脳波電極のトポロジカルな関係を考慮していない。
しかし、最新の神経科学は脳ネットワークの接続を示唆している。
したがって、脳波チャンネル間の相互作用はユークリッド距離を介して適切に測定されない可能性がある。
このギャップを埋めるために、グラフ畳み込みニューラルネットワーク(GCN)の新たな構造である注目型グラフ残差ネットワークが提示され、生の脳波信号から人間の運動意図を検知し、脳波電極の位相構造をグラフとして構築した。
一方,脳波運動画像(MI)データにおける深部ネットワークの劣化問題に対処するために,フルアテンションアーキテクチャによる深部学習を導入した。
脳波信号の基礎となる批判的かつ長期にわたる課題である個人変動は、最先端のパフォーマンス、被験者の98.08%の精度、20人の被験者の94.28%の精度でうまく処理されている。
グラフ構造トポロジの実装は生の脳波データをデコードするよりも優れていると予測された。
革新的なディープラーニングアプローチは、神経科学研究と現実世界の脳波に基づく実用的な応用、例えば発作予測の両方に普遍的な方法をもたらすことが期待された。
関連論文リスト
- RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier [0.0]
RISE-iEEGはRobust Inter-Subject Electrode implantation Variability iEEGの略である。
iEEGデコーダモデルを開発し,各患者に電極の座標を必要とせずに複数の患者のデータに適用した。
分析の結果, RISE-iEEG は HTNet や EEGNet よりも F1 よりも10%高い値を示した。
論文 参考訳(メタデータ) (2024-08-12T18:33:19Z) - Dynamic GNNs for Precise Seizure Detection and Classification from EEG Data [6.401370088497331]
本稿では,脳波の位置と対応する脳領域のセマンティクスの相互作用を捉える動的グラフニューラルネットワーク(GNN)フレームワークであるNeuroGNNを紹介する。
実世界のデータを用いた実験により、NeuroGNNは既存の最先端モデルよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-05-08T21:36:49Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - MAtt: A Manifold Attention Network for EEG Decoding [0.966840768820136]
多様体注意ネットワーク(mAtt)を特徴とする脳波復号のための新しい幾何学的学習(GDL)モデルを提案する。
時間同期EEGデータセットと非同期EEGデータセットの両方におけるMAttの評価は、一般的なEEGデコーディングのための他の主要なDLメソッドよりも優れていることを示唆している。
論文 参考訳(メタデータ) (2022-10-05T02:26:31Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
タスク指向型自己教師型学習手法を提案する。
大きなカーネルを持つ特定の2つの分岐畳み込みニューラルネットワークを特徴抽出器として設計する。
効果的に設計され、訓練された特徴抽出器は、より優れた特徴表現を脳波から抽出できることが示されている。
論文 参考訳(メタデータ) (2022-07-04T13:15:08Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
グラフ畳み込みニューラルネットワーク(GCN)に基づく新しいディープラーニングフレームワークを提案し,生の脳波信号の復号性能を向上させる。
導入されたアプローチは、パーソナライズされた予測とグループ的な予測の両方に収束することが示されている。
論文 参考訳(メタデータ) (2020-06-16T04:57:12Z) - Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor
Imagery Recognition [9.039355687614076]
本稿では,頭皮脳波に基づく極めて高精度かつ応答性の高い運動画像(MI)認識を目的とした,新しい深層学習手法を提案する。
注意機構を持つBiLSTMは、生の脳波信号から関連する特徴を導出する。
0.4秒検出フレームワークは、それぞれ98.81%と94.64%の精度で、個人およびグループレベルのトレーニングに基づいて効率的かつ効率的な予測を行っている。
論文 参考訳(メタデータ) (2020-05-02T10:03:40Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。