Derivation of a Constant Velocity Motion Model for Visual Tracking
- URL: http://arxiv.org/abs/2005.00844v4
- Date: Tue, 20 Oct 2020 22:05:50 GMT
- Title: Derivation of a Constant Velocity Motion Model for Visual Tracking
- Authors: Nathanael L. Baisa
- Abstract summary: Motion models play a great role in visual tracking applications for predicting the possible locations of objects in the next frame.
In this document, we derive the constant velocity motion model that incorporates sizes of objects that, we think, can help the new researchers to adapt to it very quickly.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion models play a great role in visual tracking applications for
predicting the possible locations of objects in the next frame. Unlike target
tracking in radar or aerospace domain which considers only points, object
tracking in computer vision involves sizes of objects. Constant velocity motion
model is the most widely used motion model for visual tracking, however, there
is no clear and understandable derivation involving sizes of objects specially
for new researchers joining this research field. In this document, we derive
the constant velocity motion model that incorporates sizes of objects that, we
think, can help the new researchers to adapt to it very quickly.
Related papers
- Motion Prompting: Controlling Video Generation with Motion Trajectories [57.049252242807874]
We train a video generation model conditioned on sparse or dense video trajectories.
We translate high-level user requests into detailed, semi-dense motion prompts.
We demonstrate our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing.
arXiv Detail & Related papers (2024-12-03T18:59:56Z) - ETTrack: Enhanced Temporal Motion Predictor for Multi-Object Tracking [4.250337979548885]
We propose a motion-based MOT approach with an enhanced temporal motion predictor, ETTrack.
Specifically, the motion predictor integrates a transformer model and a Temporal Convolutional Network (TCN) to capture short-term and long-term motion patterns.
We show ETTrack achieves a competitive performance compared with state-of-the-art trackers on DanceTrack and SportsMOT.
arXiv Detail & Related papers (2024-05-24T17:51:33Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
arXiv Detail & Related papers (2023-10-06T20:48:43Z) - Delving into Motion-Aware Matching for Monocular 3D Object Tracking [81.68608983602581]
We find that the motion cue of objects along different time frames is critical in 3D multi-object tracking.
We propose MoMA-M3T, a framework that mainly consists of three motion-aware components.
We conduct extensive experiments on the nuScenes and KITTI datasets to demonstrate our MoMA-M3T achieves competitive performance against state-of-the-art methods.
arXiv Detail & Related papers (2023-08-22T17:53:58Z) - FOLT: Fast Multiple Object Tracking from UAV-captured Videos Based on
Optical Flow [27.621524657473945]
Multiple object tracking (MOT) has been successfully investigated in computer vision.
However, MOT for the videos captured by unmanned aerial vehicles (UAV) is still challenging due to small object size, blurred object appearance, and very large and/or irregular motion.
We propose FOLT to mitigate these problems and reach fast and accurate MOT in UAV view.
arXiv Detail & Related papers (2023-08-14T15:24:44Z) - TrajectoryFormer: 3D Object Tracking Transformer with Predictive
Trajectory Hypotheses [51.60422927416087]
3D multi-object tracking (MOT) is vital for many applications including autonomous driving vehicles and service robots.
We present TrajectoryFormer, a novel point-cloud-based 3D MOT framework.
arXiv Detail & Related papers (2023-06-09T13:31:50Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
We introduce a novel motion-based tracker, MotionTrack, centered around a learnable motion predictor.
Our experimental results demonstrate that MotionTrack yields state-of-the-art performance on datasets such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2023-06-05T04:24:11Z) - Observation-Centric SORT: Rethinking SORT for Robust Multi-Object
Tracking [32.32109475782992]
We show that a simple motion model can obtain state-of-the-art tracking performance without other cues like appearance.
We thus name the proposed method as Observation-Centric SORT, OC-SORT for short.
arXiv Detail & Related papers (2022-03-27T17:57:08Z) - The Right Spin: Learning Object Motion from Rotation-Compensated Flow
Fields [61.664963331203666]
How humans perceive moving objects is a longstanding research question in computer vision.
One approach to the problem is to teach a deep network to model all of these effects.
We present a novel probabilistic model to estimate the camera's rotation given the motion field.
arXiv Detail & Related papers (2022-02-28T22:05:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.