LIMEtree: Interactively Customisable Explanations Based on Local
Surrogate Multi-output Regression Trees
- URL: http://arxiv.org/abs/2005.01427v1
- Date: Mon, 4 May 2020 12:31:29 GMT
- Title: LIMEtree: Interactively Customisable Explanations Based on Local
Surrogate Multi-output Regression Trees
- Authors: Kacper Sokol and Peter Flach
- Abstract summary: We introduce a model-agnostic and post-hoc local explainability technique for black-box predictions called LIMEtree.
We validate our algorithm on a deep neural network trained for object detection in images and compare it against Local Interpretable Model-agnostic Explanations (LIME)
Our method comes with local fidelity guarantees and can produce a range of diverse explanation types.
- Score: 21.58324172085553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Systems based on artificial intelligence and machine learning models should
be transparent, in the sense of being capable of explaining their decisions to
gain humans' approval and trust. While there are a number of explainability
techniques that can be used to this end, many of them are only capable of
outputting a single one-size-fits-all explanation that simply cannot address
all of the explainees' diverse needs. In this work we introduce a
model-agnostic and post-hoc local explainability technique for black-box
predictions called LIMEtree, which employs surrogate multi-output regression
trees. We validate our algorithm on a deep neural network trained for object
detection in images and compare it against Local Interpretable Model-agnostic
Explanations (LIME). Our method comes with local fidelity guarantees and can
produce a range of diverse explanation types, including contrastive and
counterfactual explanations praised in the literature. Some of these
explanations can be interactively personalised to create bespoke, meaningful
and actionable insights into the model's behaviour. While other methods may
give an illusion of customisability by wrapping, otherwise static, explanations
in an interactive interface, our explanations are truly interactive, in the
sense of allowing the user to "interrogate" a black-box model. LIMEtree can
therefore produce consistent explanations on which an interactive exploratory
process can be built.
Related papers
- Reasoning with trees: interpreting CNNs using hierarchies [3.6763102409647526]
We introduce a framework that uses hierarchical segmentation techniques for faithful and interpretable explanations of Convolutional Neural Networks (CNNs)
Our method constructs model-based hierarchical segmentations that maintain the model's reasoning fidelity.
Experiments show that our framework, xAiTrees, delivers highly interpretable and faithful model explanations.
arXiv Detail & Related papers (2024-06-19T06:45:19Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - FIND: A Function Description Benchmark for Evaluating Interpretability
Methods [86.80718559904854]
This paper introduces FIND (Function INterpretation and Description), a benchmark suite for evaluating automated interpretability methods.
FIND contains functions that resemble components of trained neural networks, and accompanying descriptions of the kind we seek to generate.
We evaluate methods that use pretrained language models to produce descriptions of function behavior in natural language and code.
arXiv Detail & Related papers (2023-09-07T17:47:26Z) - Concept-based Explanations using Non-negative Concept Activation Vectors
and Decision Tree for CNN Models [4.452019519213712]
This paper evaluates whether training a decision tree based on concepts extracted from a concept-based explainer can increase interpretability for Convolutional Neural Networks (CNNs) models.
arXiv Detail & Related papers (2022-11-19T21:42:55Z) - ELUDE: Generating interpretable explanations via a decomposition into
labelled and unlabelled features [23.384134043048807]
We develop an explanation framework that decomposes a model's prediction into two parts.
By identifying the latter, we are able to analyze the "unexplained" portion of the model.
We show that the set of unlabelled features can generalize to multiple models trained with the same feature space.
arXiv Detail & Related papers (2022-06-15T17:36:55Z) - Learning to Scaffold: Optimizing Model Explanations for Teaching [74.25464914078826]
We train models on three natural language processing and computer vision tasks.
We find that students trained with explanations extracted with our framework are able to simulate the teacher significantly more effectively than ones produced with previous methods.
arXiv Detail & Related papers (2022-04-22T16:43:39Z) - Interpreting Language Models with Contrastive Explanations [99.7035899290924]
Language models must consider various features to predict a token, such as its part of speech, number, tense, or semantics.
Existing explanation methods conflate evidence for all these features into a single explanation, which is less interpretable for human understanding.
We show that contrastive explanations are quantifiably better than non-contrastive explanations in verifying major grammatical phenomena.
arXiv Detail & Related papers (2022-02-21T18:32:24Z) - Explanation as a process: user-centric construction of multi-level and
multi-modal explanations [0.34410212782758043]
We present a process-based approach that combines multi-level and multi-modal explanations.
We use Inductive Logic Programming, an interpretable machine learning approach, to learn a comprehensible model.
arXiv Detail & Related papers (2021-10-07T19:26:21Z) - Contrastive Explanations for Model Interpretability [77.92370750072831]
We propose a methodology to produce contrastive explanations for classification models.
Our method is based on projecting model representation to a latent space.
Our findings shed light on the ability of label-contrastive explanations to provide a more accurate and finer-grained interpretability of a model's decision.
arXiv Detail & Related papers (2021-03-02T00:36:45Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
counterfactual explanation systems try to enable a counterfactual reasoning by modifying the input image.
We present a novel approach to generate such counterfactual image explanations based on adversarial image-to-image translation techniques.
Our results show that our approach leads to significantly better results regarding mental models, explanation satisfaction, trust, emotions, and self-efficacy than two state-of-the art systems.
arXiv Detail & Related papers (2020-12-22T10:08:05Z) - Generating Hierarchical Explanations on Text Classification via Feature
Interaction Detection [21.02924712220406]
We build hierarchical explanations by detecting feature interactions.
Such explanations visualize how words and phrases are combined at different levels of the hierarchy.
Experiments show the effectiveness of the proposed method in providing explanations both faithful to models and interpretable to humans.
arXiv Detail & Related papers (2020-04-04T20:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.