論文の概要: Advanced Computing and Related Applications Leveraging Brain-inspired
Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2309.04426v1
- Date: Fri, 8 Sep 2023 16:41:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-11 12:52:43.364762
- Title: Advanced Computing and Related Applications Leveraging Brain-inspired
Spiking Neural Networks
- Title(参考訳): 脳にインスパイアされたスパイクニューラルネットワークを活用する高度なコンピューティングと関連アプリケーション
- Authors: Lyuyang Sima, Joseph Bucukovski, Erwan Carlson, Nicole L. Yien
- Abstract要約: スパイクニューラルネットワークは、脳に似たコンピューティングを実現する人工知能のコアの1つである。
本稿では,5つのニューロンモデルの強み,弱さ,適用性について要約し,5つのネットワークトポロジの特徴を解析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the rapid evolution of next-generation brain-inspired artificial
intelligence and increasingly sophisticated electromagnetic environment, the
most bionic characteristics and anti-interference performance of spiking neural
networks show great potential in terms of computational speed, real-time
information processing, and spatio-temporal information processing. Data
processing. Spiking neural network is one of the cores of brain-like artificial
intelligence, which realizes brain-like computing by simulating the structure
and information transfer mode of biological neural networks. This paper
summarizes the strengths, weaknesses and applicability of five neuronal models
and analyzes the characteristics of five network topologies; then reviews the
spiking neural network algorithms and summarizes the unsupervised learning
algorithms based on synaptic plasticity rules and four types of supervised
learning algorithms from the perspectives of unsupervised learning and
supervised learning; finally focuses on the review of brain-like neuromorphic
chips under research at home and abroad. This paper is intended to provide
learning concepts and research orientations for the peers who are new to the
research field of spiking neural networks through systematic summaries.
- Abstract(参考訳): 次世代脳インスパイアされた人工知能の急速な進化と、ますます洗練された電磁環境において、スパイクニューラルネットワークの最もバイオニックな特性と反干渉性能は、計算速度、リアルタイム情報処理、時空間情報処理において大きな可能性を示している。
データ処理。
スパイクニューラルネットワークは、生物学的ニューラルネットワークの構造と情報伝達モードをシミュレートすることで、脳のようなコンピューティングを実現する、脳のような人工知能のコアの1つである。
This paper summarizes the strengths, weaknesses and applicability of five neuronal models and analyzes the characteristics of five network topologies; then reviews the spiking neural network algorithms and summarizes the unsupervised learning algorithms based on synaptic plasticity rules and four types of supervised learning algorithms from the perspectives of unsupervised learning and supervised learning; finally focuses on the review of brain-like neuromorphic chips under research at home and abroad.
本論文は,ニューラルネットワークのスパイク研究分野に先駆けて,体系的な要約による学習概念と研究の方向性を提供することを目的とする。
関連論文リスト
- Retinal Vessel Segmentation via Neuron Programming [17.609169389489633]
本稿では,神経レベルでのネットワークの表現能力を高めるため,ニューラルネット設計における新しいアプローチであるニューラルネットプログラミングについて紹介する。
総合的な実験により、ニューロンプログラミングは網膜の血液分画において競合的な性能を発揮することが検証された。
論文 参考訳(メタデータ) (2024-11-17T16:03:30Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
神経科学、認知科学、心理学、人工知能において、人間の脳におけるニューラルネットワークがどのように常識知識を表現するかは重要な研究トピックである。
本研究は, 個体群エンコーディングとスパイクタイミング依存的可塑性(STDP)機構をスパイクニューラルネットワークの学習に組み込む方法について検討する。
異なるコミュニティのニューロン集団は、コモンセンス知識グラフ全体を構成し、巨大なグラフがニューラルネットワークをスパイクする。
論文 参考訳(メタデータ) (2022-07-11T05:22:38Z) - An Introductory Review of Spiking Neural Network and Artificial Neural
Network: From Biological Intelligence to Artificial Intelligence [4.697611383288171]
生物学的解釈可能性を持つスパイクニューラルネットワークは、徐々に注目を集めている。
このレビューは、さまざまな研究者を惹きつけ、脳にインスパイアされた知性と人工知能の開発を進めたいと考えている。
論文 参考訳(メタデータ) (2022-04-09T09:34:34Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Neural population geometry: An approach for understanding biological and
artificial neural networks [3.4809730725241605]
生体および人工ニューラルネットワークの機能に関する洞察を提供する幾何学的アプローチの例を概観する。
神経集団幾何学は、生体と人工のニューラルネットワークにおける構造と機能の理解を統一する可能性がある。
論文 参考訳(メタデータ) (2021-04-14T18:10:34Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。