Comparative Analysis of State-of-the-Art Deep Learning Models for
Detecting COVID-19 Lung Infection from Chest X-Ray Images
- URL: http://arxiv.org/abs/2208.01637v1
- Date: Fri, 1 Jul 2022 02:23:23 GMT
- Title: Comparative Analysis of State-of-the-Art Deep Learning Models for
Detecting COVID-19 Lung Infection from Chest X-Ray Images
- Authors: Zeba Ghaffar, Pir Masoom Shah, Hikmat Khan, Syed Farhan Alam Zaidi,
Abdullah Gani, Izaz Ahmad Khan, Munam Ali Shah, Saif ul Islam
- Abstract summary: This paper evaluates the applicability of the recent top ten state-of-the-art Deep Convolutional Neural Networks (CNNs) for automatically detecting COVID-19 infection using chest X-ray images.
Our trained models MobileNet, EfficentNet, and InceptionV3 achieved a classification average accuracy of 95%, 95%, and 94%, respectively.
- Score: 3.829821362301428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ongoing COVID-19 pandemic has already taken millions of lives and damaged
economies across the globe. Most COVID-19 deaths and economic losses are
reported from densely crowded cities. It is comprehensible that the effective
control and prevention of epidemic/pandemic infectious diseases is vital.
According to WHO, testing and diagnosis is the best strategy to control
pandemics. Scientists worldwide are attempting to develop various innovative
and cost-efficient methods to speed up the testing process. This paper
comprehensively evaluates the applicability of the recent top ten
state-of-the-art Deep Convolutional Neural Networks (CNNs) for automatically
detecting COVID-19 infection using chest X-ray images. Moreover, it provides a
comparative analysis of these models in terms of accuracy. This study
identifies the effective methodologies to control and prevent infectious
respiratory diseases. Our trained models have demonstrated outstanding results
in classifying the COVID-19 infected chest x-rays. In particular, our trained
models MobileNet, EfficentNet, and InceptionV3 achieved a classification
average accuracy of 95\%, 95\%, and 94\% test set for COVID-19 class
classification, respectively. Thus, it can be beneficial for clinical
practitioners and radiologists to speed up the testing, detection, and
follow-up of COVID-19 cases.
Related papers
- Advancing Diagnostic Precision: Leveraging Machine Learning Techniques
for Accurate Detection of Covid-19, Pneumonia, and Tuberculosis in Chest
X-Ray Images [0.0]
Lung diseases such as COVID-19, tuberculosis (TB), and pneumonia continue to be serious global health concerns.
Paramedics and scientists are working intensively to create a reliable and precise approach for early-stage COVID-19 diagnosis.
arXiv Detail & Related papers (2023-10-09T18:38:49Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
We introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images.
Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi.
To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative.
arXiv Detail & Related papers (2021-08-05T16:47:33Z) - Dual-Attention Residual Network for Automatic Diagnosis of COVID-19 [6.941255691176647]
We propose a novel residual network to automatically identify COVID-19 from other common pneumonia and normal people using CT images.
Our method can differentiate COVID-19 from the other two classes with 94.7% accuracy, 93.73% sensitivity, 98.28% specificity, 95.26% F1-score, and an area under the receiver operating characteristic curve (AUC) of 0.99.
arXiv Detail & Related papers (2021-05-14T11:59:47Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
Chest radiography is an alternative screening method for the COVID-19.
Computer-aided diagnosis (CAD) has proven to be a viable solution at low cost and with fast speed.
To address this challenge, we propose the use of a low-shot learning approach named imprinted weights.
arXiv Detail & Related papers (2021-05-04T19:01:40Z) - A New Screening Method for COVID-19 based on Ocular Feature Recognition
by Machine Learning Tools [66.20818586629278]
Coronavirus disease 2019 (COVID-19) has affected several million people.
New screening method of analyzing the eye-region images, captured by common CCD and CMOS cameras, could reliably make a rapid risk screening of COVID-19.
arXiv Detail & Related papers (2020-09-04T00:50:27Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - COVID-DA: Deep Domain Adaptation from Typical Pneumonia to COVID-19 [92.4955073477381]
The outbreak of novel coronavirus disease 2019 (COVID-19) has already infected millions of people and is still rapidly spreading all over the globe.
Deep learning has been used recently as effective computer-aided means to improve diagnostic efficiency.
We propose a new deep domain adaptation method for COVID-19 diagnosis, namely COVID-DA.
arXiv Detail & Related papers (2020-04-30T03:13:40Z) - Towards an Effective and Efficient Deep Learning Model for COVID-19
Patterns Detection in X-ray Images [2.21653002719733]
The main goal of this work is to propose an accurate yet efficient method for the problem of COVID-19 screening in chest X-rays.
A dataset of 13,569 X-ray images divided into healthy, non-COVID-19 pneumonia, and COVID-19 patients is used to train the proposed approaches.
Results: The proposed approach was able to produce a high-quality model, with an overall accuracy of 93.9%, COVID-19, sensitivity of 96.8% and positive prediction of 100%.
arXiv Detail & Related papers (2020-04-12T23:26:56Z) - CoroNet: A deep neural network for detection and diagnosis of COVID-19
from chest x-ray images [0.0]
CoroNet is a Deep Conceptional Neural Network model to automatically detect COVID-19 infection from chest X-ray images.
The proposed model achieved an overall accuracy of 89.6% and the precision and recall rate for COVID-19 cases are 93% and 98.2%.
arXiv Detail & Related papers (2020-04-10T07:46:07Z) - COVID_MTNet: COVID-19 Detection with Multi-Task Deep Learning Approaches [5.578413517654704]
We propose a fast and efficient way to identify COVID-19 patients with multi-task deep learning (DL) methods.
X-ray and CT scan images are considered to evaluate the proposed technique.
The detection model shows around 84.67% testing accuracy from X-ray images and 98.78% accuracy in CT-images.
arXiv Detail & Related papers (2020-04-07T23:19:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.