Challenges in COVID-19 Chest X-Ray Classification: Problematic Data or
Ineffective Approaches?
- URL: http://arxiv.org/abs/2201.06052v1
- Date: Sun, 16 Jan 2022 14:12:04 GMT
- Title: Challenges in COVID-19 Chest X-Ray Classification: Problematic Data or
Ineffective Approaches?
- Authors: Muhammad Ridzuan, Ameera Ali Bawazir, Ivo Gollini Navarette, Ibrahim
Almakky and Mohammad Yaqub
- Abstract summary: deep learning to classify and detect COVID-19 infections from chest radiography images.
In this work, we investigate the challenges faced with creating reliable AI solutions from both the data and machine learning perspectives.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The value of quick, accurate, and confident diagnoses cannot be undermined to
mitigate the effects of COVID-19 infection, particularly for severe cases.
Enormous effort has been put towards developing deep learning methods to
classify and detect COVID-19 infections from chest radiography images. However,
recently some questions have been raised surrounding the clinical viability and
effectiveness of such methods. In this work, we carry out extensive experiments
on a large COVID-19 chest X-ray dataset to investigate the challenges faced
with creating reliable AI solutions from both the data and machine learning
perspectives. Accordingly, we offer an in-depth discussion into the challenges
faced by some widely-used deep learning architectures associated with chest
X-Ray COVID-19 classification. Finally, we include some possible directions and
considerations to improve the performance of the models and the data for use in
clinical settings.
Related papers
- Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Detection of COVID19 in Chest X-Ray Images Using Transfer Learning [0.0]
This paper investigates the concept of transfer learning using two of the most well-known VGGNet architectures, namely VGG-16 and VGG-19.
We generated two different datasets to evaluate the performance of the proposed system for the identification of positive Covid-19 instances in a multiclass and binary classification problems.
arXiv Detail & Related papers (2023-04-09T05:02:04Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for
COVID-19 Detection [10.516962652888989]
Many studies reported detecting COVID-19 in chest X-rays accurately using deep learning.
We demonstrate that model decisions may rely on confounding factors rather than medical pathology.
We propose a novel method to minimise their negative impact.
arXiv Detail & Related papers (2022-01-23T20:35:45Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - COVID-DA: Deep Domain Adaptation from Typical Pneumonia to COVID-19 [92.4955073477381]
The outbreak of novel coronavirus disease 2019 (COVID-19) has already infected millions of people and is still rapidly spreading all over the globe.
Deep learning has been used recently as effective computer-aided means to improve diagnostic efficiency.
We propose a new deep domain adaptation method for COVID-19 diagnosis, namely COVID-DA.
arXiv Detail & Related papers (2020-04-30T03:13:40Z) - Deep Learning COVID-19 Features on CXR using Limited Training Data Sets [40.45289250518209]
We propose a patch-based convolutional neural network approach with a relatively small number of trainable parameters for COVID-19 diagnosis.
Experimental results show that our method achieves state-of-the-art performance and provides clinically interpretable saliency maps.
arXiv Detail & Related papers (2020-04-13T03:44:42Z) - Towards an Effective and Efficient Deep Learning Model for COVID-19
Patterns Detection in X-ray Images [2.21653002719733]
The main goal of this work is to propose an accurate yet efficient method for the problem of COVID-19 screening in chest X-rays.
A dataset of 13,569 X-ray images divided into healthy, non-COVID-19 pneumonia, and COVID-19 patients is used to train the proposed approaches.
Results: The proposed approach was able to produce a high-quality model, with an overall accuracy of 93.9%, COVID-19, sensitivity of 96.8% and positive prediction of 100%.
arXiv Detail & Related papers (2020-04-12T23:26:56Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
We introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images.
To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images.
We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases.
arXiv Detail & Related papers (2020-03-22T12:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.