論文の概要: Ego-motion and Surrounding Vehicle State Estimation Using a Monocular
Camera
- arxiv url: http://arxiv.org/abs/2005.01632v3
- Date: Wed, 6 May 2020 00:52:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 01:14:58.402462
- Title: Ego-motion and Surrounding Vehicle State Estimation Using a Monocular
Camera
- Title(参考訳): 単眼カメラを用いた自走運動と周辺車両状態推定
- Authors: Jun Hayakawa, Behzad Dariush
- Abstract要約: 単眼カメラを用いて,エゴモーションと周囲の車両状態を推定する新しい機械学習手法を提案する。
提案手法は3つのディープニューラルネットワークを組み合わせて,画像列から3次元車両境界ボックス,深度,光学的流れを推定する。
- 参考スコア(独自算出の注目度): 11.29865843123467
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Understanding ego-motion and surrounding vehicle state is essential to enable
automated driving and advanced driving assistance technologies. Typical
approaches to solve this problem use fusion of multiple sensors such as LiDAR,
camera, and radar to recognize surrounding vehicle state, including position,
velocity, and orientation. Such sensing modalities are overly complex and
costly for production of personal use vehicles. In this paper, we propose a
novel machine learning method to estimate ego-motion and surrounding vehicle
state using a single monocular camera. Our approach is based on a combination
of three deep neural networks to estimate the 3D vehicle bounding box, depth,
and optical flow from a sequence of images. The main contribution of this paper
is a new framework and algorithm that integrates these three networks in order
to estimate the ego-motion and surrounding vehicle state. To realize more
accurate 3D position estimation, we address ground plane correction in
real-time. The efficacy of the proposed method is demonstrated through
experimental evaluations that compare our results to ground truth data
available from other sensors including Can-Bus and LiDAR.
- Abstract(参考訳): エゴモーションと周囲の車両状態を理解することは、自動運転と高度な運転支援技術を実現するために不可欠である。
この問題を解決する典型的なアプローチは、lidar、カメラ、レーダーなどの複数のセンサーを融合して、位置、速度、方向など周囲の車両の状態を認識する。
このような感覚モダリティは、個人用車両の製造には複雑でコストがかかる。
本論文では,単一の単眼カメラを用いて自走運動と周辺車両状態を推定する新しい機械学習手法を提案する。
我々のアプローチは、3つのディープニューラルネットワークを組み合わせることで、一連の画像から3次元車両のバウンディングボックス、深さ、光の流れを推定する。
本論文の主な貢献は,エゴモーションと周囲の車両状態を推定するために,これら3つのネットワークを統合する新しいフレームワークとアルゴリズムである。
より正確な3次元位置推定を実現するために,地盤面の補正をリアルタイムに行う。
提案手法の有効性は,Can-BusやLiDARなど他のセンサから得られる真実データと比較した実験により実証された。
関連論文リスト
- Multi-Object Tracking with Camera-LiDAR Fusion for Autonomous Driving [0.764971671709743]
提案したMOTアルゴリズムは、3段階のアソシエーションプロセスと、検出された動的障害物の運動を推定する拡張カルマンフィルタと、トラック管理フェーズとを備える。
多くの最先端のマルチモーダルMOTアプローチとは異なり、提案アルゴリズムはエゴのグローバルなポーズの地図や知識に依存しない。
このアルゴリズムはシミュレーションと実世界のデータの両方で検証され、良好な結果が得られる。
論文 参考訳(メタデータ) (2024-03-06T23:49:16Z) - HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for
Autonomous Driving [95.42203932627102]
3Dの人間のポーズ推定は、自動運転車が歩行者の微妙で複雑な振る舞いを知覚し理解できるようにする新しい技術である。
提案手法は,これらの補完信号を半教師付き方式で効率的に利用し,既存の手法よりも大きなマージンで性能を向上する。
具体的には、LiDAR点を画素整列マルチモーダル特徴に埋め込み、トランスフォーマーの精細化段階を経る。
論文 参考訳(メタデータ) (2022-12-15T11:15:14Z) - Ego Vehicle Speed Estimation using 3D Convolution with Masked Attention [0.0]
本稿では,エゴ車の速度を推定するマスク付きアテンションアーキテクチャを用いた3D-CNNを提案する。
公開されている2つのデータセット、nuImagesとKITTIで実験を行う。
論文 参考訳(メタデータ) (2022-12-11T07:22:25Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
最近の知覚システムは、センサー融合による空間理解を高めるが、しばしば完全な環境コンテキストを欠いている。
我々は,3台のカメラを統合し,人間の視野をエミュレートするフレームワークを導入し,トップダウンのバードアイビューセマンティックデータと組み合わせて文脈表現を強化する。
提案手法は, オープンループ設定において0.67mの変位誤差を達成し, nuScenesデータセットでは6.9%の精度で現在の手法を上回っている。
論文 参考訳(メタデータ) (2022-10-13T05:56:20Z) - Cyber Mobility Mirror for Enabling Cooperative Driving Automation: A
Co-Simulation Platform [16.542137414609606]
共シミュレーションプラットフォームは、高忠実度センサー認識システムとリアルタイム3D再構成システムによるサイバーワールドの両方で、現実世界をシミュレートすることができる。
ミラーワールドシミュレーターは知覚情報から3Dオブジェクトとその軌跡を再構築する役割を担っている。
道路沿いのLiDARを用いたリアルタイム車両検出・3次元再構築システムの研究事例を試作した。
論文 参考訳(メタデータ) (2022-01-24T05:27:20Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:10:27Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
本稿では,レーダとカメラセンサの融合に基づく共同物体検出と追跡のためのエンドツーエンドネットワークを提案する。
提案手法では,物体検出に中心型レーダカメラ融合アルゴリズムを用い,物体関連にグリーディアルゴリズムを用いる。
提案手法は,20.0AMOTAを達成し,ベンチマークにおける視覚ベースの3Dトラッキング手法よりも優れる,挑戦的なnuScenesデータセット上で評価する。
論文 参考訳(メタデータ) (2021-07-11T23:56:53Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - Monocular 3D Vehicle Detection Using Uncalibrated Traffic Cameras
through Homography [12.062095895630563]
本稿では,1台の交通カメラから3次元世界における車両の位置とポーズを抽出する手法を提案する。
道路平面と画像平面の相同性が3D車両の検出に不可欠であることを観察する。
本稿では,BEV画像の歪み検出精度を高めるためのtextittailedr-box と textitdual-view Network アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-03-29T02:57:37Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - Towards Autonomous Driving: a Multi-Modal 360$^{\circ}$ Perception
Proposal [87.11988786121447]
本稿では,自動運転車の3次元物体検出と追跡のためのフレームワークを提案する。
このソリューションは、新しいセンサ融合構成に基づいて、正確で信頼性の高い道路環境検出を提供する。
自動運転車に搭載されたシステムの様々なテストは、提案された知覚スタックの適合性を評価することに成功している。
論文 参考訳(メタデータ) (2020-08-21T20:36:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。