論文の概要: Interpreting Rate-Distortion of Variational Autoencoder and Using Model
Uncertainty for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2005.01889v2
- Date: Thu, 7 May 2020 16:59:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 13:40:28.894432
- Title: Interpreting Rate-Distortion of Variational Autoencoder and Using Model
Uncertainty for Anomaly Detection
- Title(参考訳): 変分オートエンコーダのレートゆらぎの解釈とモデル不確かさを用いた異常検出
- Authors: Seonho Park, George Adosoglou, Panos M. Pardalos
- Abstract要約: 表現学習による教師なし異常検出のためのスケーラブルな機械学習システムを構築した。
本稿では,情報理論の観点からVAEを再考し,再構成誤差を用いた理論的基礎を提供する。
ベンチマークデータセットに対するアプローチの競合性能を実証的に示す。
- 参考スコア(独自算出の注目度): 5.491655566898372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building a scalable machine learning system for unsupervised anomaly
detection via representation learning is highly desirable. One of the prevalent
methods is using a reconstruction error from variational autoencoder (VAE) via
maximizing the evidence lower bound. We revisit VAE from the perspective of
information theory to provide some theoretical foundations on using the
reconstruction error, and finally arrive at a simpler and more effective model
for anomaly detection. In addition, to enhance the effectiveness of detecting
anomalies, we incorporate a practical model uncertainty measure into the
metric. We show empirically the competitive performance of our approach on
benchmark datasets.
- Abstract(参考訳): 表現学習による教師なし異常検出のためのスケーラブルな機械学習システムの構築が望ましい。
代表的な方法の1つは、証拠の下位境界を最大化することで、変分オートエンコーダ(VAE)の再構成誤差を使用することである。
我々は情報理論の観点からvaeを再検討し,再構成誤差の利用に関する理論的基礎を提供し,最終的により単純で効果的な異常検出モデルに到達した。
さらに,異常検出の有効性を高めるために,実際のモデル不確実性尺度を指標に組み込んだ。
ベンチマークデータセットに対するアプローチの競合性能を実証的に示す。
関連論文リスト
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
既存のAI生成画像(AIGI)検出手法は、しばしば限定的な一般化性能に悩まされる。
本稿では、AIGI検出において、これまで見過ごされてきた重要な非対称性現象を同定する。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
本稿では,新たな異常検出手法であるMeLIADを提案する。
MeLIADはメートル法学習に基づいており、真の異常の事前分布仮定に頼ることなく、設計による解釈可能性を達成する。
解釈可能性の定量的かつ定性的な評価を含む5つの公開ベンチマークデータセットの実験は、MeLIADが異常検出とローカライゼーション性能の改善を達成することを実証している。
論文 参考訳(メタデータ) (2024-09-20T16:01:43Z) - Targeted collapse regularized autoencoder for anomaly detection: black hole at the center [3.924781781769534]
オートエンコーダは通常のクラスを超えて一般化することができ、いくつかの異常なサンプルに対して小さな再構成誤差を達成できる。
我々は、ニューラルネットワークコンポーネントの追加、計算の関与、煩雑なトレーニングの代わりに、再構成損失を計算的に軽い用語で補うという、驚くほど簡単な方法を提案する。
これは、オートエンコーダに基づく異常検出アルゴリズムのブラックボックスの性質を緩和し、さらなる利点、障害事例、潜在的な新しい方向の解明のための道筋を提供する。
論文 参考訳(メタデータ) (2023-06-22T01:33:47Z) - Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN [4.5123329001179275]
本研究では,GAN(Generative Adversarial Neural Network)のパワーを活用した,現実の応用における異常検出のための逆方向検出手法を提案する。
従来の手法は、あらゆる種類の異常に適用できないような、クラス単位での精度のばらつきに悩まされていた。
RCALADという手法は,この構造に新たな識別器を導入し,より効率的な学習プロセスを実現することで,この問題を解決しようとするものである。
論文 参考訳(メタデータ) (2023-04-16T13:05:39Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Framing Algorithmic Recourse for Anomaly Detection [18.347886926848563]
我々は,タブラルデータ(CARAT)における異常に対する文脈保存型アルゴリズムレコースを提案する。
CARATはトランスフォーマーベースのエンコーダデコーダモデルを用いて、低い確率で特徴を見つけることで異常を説明する。
異常なインスタンス内の特徴の全体的コンテキストを使用して、強調された特徴を変更することによって、意味的に一貫性のある反事実が生成される。
論文 参考訳(メタデータ) (2022-06-29T03:30:51Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
本稿では,ビデオ監視における異常検出問題に対処する。
異常事象の固有な規則性と不均一性のため、問題は正規性モデリング戦略と見なされる。
我々のモデルは、トレーニング中に異常なサンプルを見ることなく、オブジェクト中心の正規パターンを学習する。
論文 参考訳(メタデータ) (2022-03-07T19:28:39Z) - Learned ISTA with Error-based Thresholding for Adaptive Sparse Coding [58.73333095047114]
学習用ISTA(LISTA)のためのエラーベースのしきい値設定機構を提案する。
提案手法は, 縮小関数の学習可能なパラメータを再構成誤差からよく切り離していることを示す。
論文 参考訳(メタデータ) (2021-12-21T05:07:54Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。