論文の概要: Anomaly Detection via Autoencoder Composite Features and NCE
- arxiv url: http://arxiv.org/abs/2502.01920v1
- Date: Tue, 04 Feb 2025 01:29:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:57:42.404441
- Title: Anomaly Detection via Autoencoder Composite Features and NCE
- Title(参考訳): オートエンコーダ複合機能とNCEによる異常検出
- Authors: Yalin Liao, Austin J. Brockmeier,
- Abstract要約: オートエンコーダ(AE)または生成モデルは、通常入力のデータ分布をモデル化するためにしばしば使用される。
ノイズコントラスト推定(NCE)を訓練したAEと確率モデルの両方が異常検出を行うための非結合型トレーニング手法を提案する。
- 参考スコア(独自算出の注目度): 1.2891210250935148
- License:
- Abstract: Unsupervised anomaly detection is a challenging task. Autoencoders (AEs) or generative models are often employed to model the data distribution of normal inputs and subsequently identify anomalous, out-of-distribution inputs by high reconstruction error or low likelihood, respectively. However, AEs may generalize and achieve small reconstruction errors on abnormal inputs. We propose a decoupled training approach for anomaly detection that both an AE and a likelihood model trained with noise contrastive estimation (NCE). After training the AE, NCE estimates a probability density function, to serve as the anomaly score, on the joint space of the AE's latent representation combined with features of the reconstruction quality. To further reduce the false negative rate in NCE we systematically varying the reconstruction features to augment the training and optimize the contrastive Gaussian noise distribution. Experimental assessments on multiple benchmark datasets demonstrate that the proposed approach matches the performance of prevalent state-of-the-art anomaly detection algorithms.
- Abstract(参考訳): 教師なし異常検出は難しい課題である。
オートエンコーダ(AE)または生成モデルは、通常入力のデータ分布をモデル化するためにしばしば用いられ、その後、高い再構成誤差または低い確率で異常な、分布外入力を識別する。
しかし、AEsは異常な入力に対して小さな再構成誤差を一般化し、達成することができる。
本稿では,ノイズコントラスト推定(NCE)を訓練したAEと確率モデルの両方が異常検出を行うための非結合型トレーニング手法を提案する。
AEを訓練した後、NCEは、AEの潜在表現の結合空間と復元品質の特徴を組み合わせた、異常スコアとして機能する確率密度関数を推定する。
NCEにおける偽陰性率をさらに低減するため,再建特徴を体系的に変化させ,訓練を増強し,対照的なガウス雑音分布を最適化した。
複数のベンチマークデータセットに対する実験的評価は,提案手法が最先端の異常検出アルゴリズムの性能と一致することを示した。
関連論文リスト
- MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
本稿では,新たな異常検出手法であるMeLIADを提案する。
MeLIADはメートル法学習に基づいており、真の異常の事前分布仮定に頼ることなく、設計による解釈可能性を達成する。
解釈可能性の定量的かつ定性的な評価を含む5つの公開ベンチマークデータセットの実験は、MeLIADが異常検出とローカライゼーション性能の改善を達成することを実証している。
論文 参考訳(メタデータ) (2024-09-20T16:01:43Z) - Exploiting Autoencoder's Weakness to Generate Pseudo Anomalies [17.342474659784823]
異常検出の典型的なアプローチは、通常のデータのパターンや表現を学習するためにのみ、通常のデータでオートエンコーダ(AE)を訓練することである。
本稿では,AEの弱点,すなわち異常の再構築をうまく活用して,学習適応雑音から擬似異常を生成することを提案する。
論文 参考訳(メタデータ) (2024-05-09T16:22:24Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN [4.5123329001179275]
本研究では,GAN(Generative Adversarial Neural Network)のパワーを活用した,現実の応用における異常検出のための逆方向検出手法を提案する。
従来の手法は、あらゆる種類の異常に適用できないような、クラス単位での精度のばらつきに悩まされていた。
RCALADという手法は,この構造に新たな識別器を導入し,より効率的な学習プロセスを実現することで,この問題を解決しようとするものである。
論文 参考訳(メタデータ) (2023-04-16T13:05:39Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly
Detection [9.19194451963411]
半教師付き異常検出は、通常のデータに基づいて訓練されたモデルを用いて、通常のサンプルから異常を検出することを目的としている。
本稿では,自己エンコーダのパラメータを協調的に学習する手法であるDASVDDを提案する。
論文 参考訳(メタデータ) (2021-06-09T21:57:41Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
正規データと異常データの間のKL偏差を計測する新たな目的関数を提案する。
提案手法は,複数のベンチマークデータセットの最先端性能を著しく上回っている。
論文 参考訳(メタデータ) (2020-12-09T08:16:35Z) - Interpreting Rate-Distortion of Variational Autoencoder and Using Model
Uncertainty for Anomaly Detection [5.491655566898372]
表現学習による教師なし異常検出のためのスケーラブルな機械学習システムを構築した。
本稿では,情報理論の観点からVAEを再考し,再構成誤差を用いた理論的基礎を提供する。
ベンチマークデータセットに対するアプローチの競合性能を実証的に示す。
論文 参考訳(メタデータ) (2020-05-05T00:03:48Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。