Intra-model Variability in COVID-19 Classification Using Chest X-ray
Images
- URL: http://arxiv.org/abs/2005.02167v1
- Date: Thu, 30 Apr 2020 21:20:32 GMT
- Title: Intra-model Variability in COVID-19 Classification Using Chest X-ray
Images
- Authors: Brian D Goodwin, Corey Jaskolski, Can Zhong, Herick Asmani
- Abstract summary: We quantify baseline performance metrics and variability for COVID-19 detection in chest x-ray for 12 common deep learning architectures.
Best performing models achieve a false negative rate of 3 out of 20 for detecting COVID-19 in a hold-out set.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: X-ray and computed tomography (CT) scanning technologies for COVID-19
screening have gained significant traction in AI research since the start of
the coronavirus pandemic. Despite these continuous advancements for COVID-19
screening, many concerns remain about model reliability when used in a clinical
setting. Much has been published, but with limited transparency in expected
model performance. We set out to address this limitation through a set of
experiments to quantify baseline performance metrics and variability for
COVID-19 detection in chest x-ray for 12 common deep learning architectures.
Specifically, we adopted an experimental paradigm controlling for
train-validation-test split and model architecture where the source of
prediction variability originates from model weight initialization, random data
augmentation transformations, and batch shuffling. Each model architecture was
trained 5 separate times on identical train-validation-test splits of a
publicly available x-ray image dataset provided by Cohen et al. (2020). Results
indicate that even within model architectures, model behavior varies in a
meaningful way between trained models. Best performing models achieve a false
negative rate of 3 out of 20 for detecting COVID-19 in a hold-out set. While
these results show promise in using AI for COVID-19 screening, they further
support the urgent need for diverse medical imaging datasets for model training
in a way that yields consistent prediction outcomes. It is our hope that these
modeling results accelerate work in building a more robust dataset and a viable
screening tool for COVID-19.
Related papers
- Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Vision Transformer-based Model for Severity Quantification of Lung
Pneumonia Using Chest X-ray Images [11.12596879975844]
We present a Vision Transformer-based neural network model that relies on a small number of trainable parameters to quantify the severity of COVID-19 and other lung diseases.
Our model can provide peak performance in quantifying severity with high generalizability at a relatively low computational cost.
arXiv Detail & Related papers (2023-03-18T12:38:23Z) - Explainable and Lightweight Model for COVID-19 Detection Using Chest
Radiology Images [0.0]
Convolutional Neural Networks (CNNs) are well suited for the image analysis tasks when trained on humongous amounts of data.
Most of the tools proposed for detection of COVID-19 claims to have high sensitivity and recalls but have failed to generalize and perform when tested on unseen datasets.
This study provides a detailed discussion of the success and failure of the proposed model at an image level.
arXiv Detail & Related papers (2022-12-28T11:48:29Z) - Improving COVID-19 CXR Detection with Synthetic Data Augmentation [0.0]
We train a deep learning model on publicly available COVID-19 image data and evaluate the model on local hospital chest X-ray data.
We are using a Generative Adversarial Network to generate synthetic X-ray images based on this data.
arXiv Detail & Related papers (2021-12-14T16:42:39Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Exploration of Interpretability Techniques for Deep COVID-19
Classification using Chest X-ray Images [10.01138352319106]
Five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their Ensemble have been used in this paper to classify COVID-19, pneumoniae and healthy subjects using Chest X-Ray images.
The mean Micro-F1 score of the models for COVID-19 classifications ranges from 0.66 to 0.875, and is 0.89 for the Ensemble of the network models.
arXiv Detail & Related papers (2020-06-03T22:55:53Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.