Exploration of Interpretability Techniques for Deep COVID-19
Classification using Chest X-ray Images
- URL: http://arxiv.org/abs/2006.02570v3
- Date: Sat, 15 Oct 2022 18:12:44 GMT
- Title: Exploration of Interpretability Techniques for Deep COVID-19
Classification using Chest X-ray Images
- Authors: Soumick Chatterjee, Fatima Saad, Chompunuch Sarasaen, Suhita Ghosh,
Valerie Krug, Rupali Khatun, Rahul Mishra, Nirja Desai, Petia Radeva, Georg
Rose, Sebastian Stober, Oliver Speck, Andreas N\"urnberger
- Abstract summary: Five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their Ensemble have been used in this paper to classify COVID-19, pneumoniae and healthy subjects using Chest X-Ray images.
The mean Micro-F1 score of the models for COVID-19 classifications ranges from 0.66 to 0.875, and is 0.89 for the Ensemble of the network models.
- Score: 10.01138352319106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The outbreak of COVID-19 has shocked the entire world with its fairly rapid
spread and has challenged different sectors. One of the most effective ways to
limit its spread is the early and accurate diagnosis of infected patients.
Medical imaging such as X-ray and Computed Tomography (CT) combined with the
potential of Artificial Intelligence (AI) plays an essential role in supporting
the medical staff in the diagnosis process. Thereby, five different deep
learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and
DenseNet161) and their Ensemble have been used in this paper to classify
COVID-19, pneumoni{\ae} and healthy subjects using Chest X-Ray images.
Multi-label classification was performed to predict multiple pathologies for
each patient, if present. Foremost, the interpretability of each of the
networks was thoroughly studied using local interpretability methods -
occlusion, saliency, input X gradient, guided backpropagation, integrated
gradients, and DeepLIFT, and using a global technique - neuron activation
profiles. The mean Micro-F1 score of the models for COVID-19 classifications
ranges from 0.66 to 0.875, and is 0.89 for the Ensemble of the network models.
The qualitative results depicted the ResNets to be the most interpretable
models. This research demonstrates the importance of using interpretability
methods to compare different models before making the decision regarding the
best-performing model.
Related papers
- Robust and Interpretable COVID-19 Diagnosis on Chest X-ray Images using
Adversarial Training [0.8287206589886881]
We train 21 convolutional neural network (CNN) models on a diverse set of 33,000+ chest X-ray (CXR) images to classify between healthy, COVID-19, and non-COVID-19 pneumonia CXRs.
Our resulting models achieved a 3-way classification accuracy, recall, and precision of up to 97.03%, 97.97%, and 99.95%, respectively.
arXiv Detail & Related papers (2023-11-23T23:40:01Z) - A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
The aim of this study was to take a novel approach in the machine learning-based detection of COVID-19 from chest CT scans.
The proposed model attained an overall accuracy of 0.927 and a sensitivity of 0.958.
arXiv Detail & Related papers (2022-06-15T18:35:22Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
COVID-19 is a global pandemic disease overgrowing worldwide.
Computer-aided screening tools with greater sensitivity is imperative for disease diagnosis and prognosis.
This article proposes a 3D Convolutional Neural Network (CNN)-based classification approach.
arXiv Detail & Related papers (2021-02-11T18:16:18Z) - Efficient and Visualizable Convolutional Neural Networks for COVID-19
Classification Using Chest CT [0.0]
COVID-19 has infected over 65 million people worldwide as of December 4, 2020.
Deep learning has emerged as a promising diagnosis technique.
In this paper, we evaluate and compare 40 different convolutional neural network architectures for COVID-19 diagnosis.
arXiv Detail & Related papers (2020-12-22T07:09:48Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.