論文の概要: Probing the Natural Language Inference Task with Automated Reasoning
Tools
- arxiv url: http://arxiv.org/abs/2005.02573v1
- Date: Wed, 6 May 2020 03:18:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 04:57:50.628745
- Title: Probing the Natural Language Inference Task with Automated Reasoning
Tools
- Title(参考訳): 自動推論ツールによる自然言語推論タスクの提案
- Authors: Zaid Marji, Animesh Nighojkar, John Licato
- Abstract要約: 自然言語推論(NLI)タスクは、現在のNLPにおいて重要なタスクである。
我々はNLIタスクの論理構造を調べるために他の手法を用いる。
我々は、機械指向の自然言語がNLI文のパースにどの程度うまく利用できるか、また、自動定理証明器が結果の式に対していかにうまく推論できるかを示す。
- 参考スコア(独自算出の注目度): 6.445605125467574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Natural Language Inference (NLI) task is an important task in modern NLP,
as it asks a broad question to which many other tasks may be reducible: Given a
pair of sentences, does the first entail the second? Although the
state-of-the-art on current benchmark datasets for NLI are deep learning-based,
it is worthwhile to use other techniques to examine the logical structure of
the NLI task. We do so by testing how well a machine-oriented controlled
natural language (Attempto Controlled English) can be used to parse NLI
sentences, and how well automated theorem provers can reason over the resulting
formulae. To improve performance, we develop a set of syntactic and semantic
transformation rules. We report their performance, and discuss implications for
NLI and logic-based NLP.
- Abstract(参考訳): 自然言語推論(NLI)タスクは、現代のNLPにおいて重要なタスクであり、他の多くのタスクがどのタスクを再現できるかを広範囲に問う。
現在のNLIのベンチマークデータセットの最先端はディープラーニングに基づくものであるが、NLIタスクの論理構造を調べるために他のテクニックを使用することは価値がある。
我々は、機械指向の自然言語(Attempto Controlled English)がNLI文のパースにどの程度うまく使えるか、また、自動定理プローバーが結果の公式をどう解釈できるかをテストする。
性能を向上させるために,構文および意味変換規則のセットを開発した。
それらの性能を報告し、NLIと論理ベースのNLPについて考察する。
関連論文リスト
- A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus [71.77214818319054]
自然言語推論は自然言語理解のプロキシである。
ルーマニア語のNLIコーパスは公開されていない。
58Kの訓練文対からなるルーマニア初のNLIコーパス(RoNLI)を紹介する。
論文 参考訳(メタデータ) (2024-05-20T08:41:15Z) - kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest
Neighbor In-Context Learning [50.40636157214161]
Task-Oriented Parsing (TOP)により、会話アシスタントは自然言語で表現されたユーザーコマンドを解釈できる。
LLMは、自然言語のプロンプトに基づいて、コンピュータプログラムにおいて印象的な性能を達成した。
本稿では,LLMのセマンティック解析機能を活用することに焦点を当てる。
論文 参考訳(メタデータ) (2023-12-17T17:26:50Z) - Native Language Identification with Large Language Models [60.80452362519818]
我々はGPTモデルがNLI分類に熟練していることを示し、GPT-4は0ショット設定でベンチマーク11テストセットで91.7%の新たなパフォーマンス記録を樹立した。
また、従来の完全教師付き設定とは異なり、LLMは既知のクラスに制限されずにNLIを実行できることを示す。
論文 参考訳(メタデータ) (2023-12-13T00:52:15Z) - Deep Natural Language Feature Learning for Interpretable Prediction [1.6114012813668932]
本稿では,メインの複雑なタスクを仲介しやすいサブタスクの集合に分解する手法を提案する。
本手法では,これらの質問に対する回答からなるベクトルで各例を表現できる。
我々は,学生のオープンエンド数学試験に対する回答の不整合性の検出と,気候変動と農業学に関する科学的論文の体系的な文献レビューのための要約のスクリーニングという,2つのまったく異なるタスクにこの手法を適用した。
論文 参考訳(メタデータ) (2023-11-09T21:43:27Z) - Unravelling Interlanguage Facts via Explainable Machine Learning [10.71581852108984]
我々は、説明可能な機械学習アルゴリズムによって訓練されたNLI分類器の内部に焦点をあてる。
我々は、この視点を用いて、NLIと相補的なタスクの両方に対処し、テキストがネイティブまたは非ネイティブ話者によって書かれたかどうかを推測する。
話者のL1を最も示唆する2つの課題を解くのに最も有効な言語特性について検討する。
論文 参考訳(メタデータ) (2022-08-02T14:05:15Z) - AdaPrompt: Adaptive Model Training for Prompt-based NLP [77.12071707955889]
PLMの継続事前学習のための外部データを適応的に検索するAdaPromptを提案する。
5つのNLPベンチマークの実験結果から、AdaPromptは数ショット設定で標準PLMよりも改善可能であることが示された。
ゼロショット設定では、標準のプロンプトベースの手法を26.35%の相対誤差削減で上回ります。
論文 参考訳(メタデータ) (2022-02-10T04:04:57Z) - Polish Natural Language Inference and Factivity -- an Expert-based
Dataset and Benchmarks [0.07734726150561087]
このデータセットはポーランド語で完全に自然言語の発声を含んでいる。
主動詞の頻度および他の言語的特徴に関する代表的なサンプルである。
入力文のみを消費するBERTベースのモデルは、NLI/factiveの複雑さの大部分を捉えていることを示している。
論文 参考訳(メタデータ) (2022-01-10T18:32:55Z) - NeuralLog: Natural Language Inference with Joint Neural and Logical
Reasoning [6.795509403707242]
本稿では,単調性に基づく論理推論エンジンと,フレーズアライメントのためのニューラルネットワーク言語モデルの両方を利用するNeuralLogという推論フレームワークを提案する。
我々のフレームワークは,NLIタスクを古典的な探索問題としてモデル化し,ビーム探索アルゴリズムを用いて最適な推論経路を探索する。
実験により,我々のジョイントロジックとニューラル推論システムがNLIタスクの精度を改善し,SICKデータセットとMEDデータセットの最先端の精度を実現することが示された。
論文 参考訳(メタデータ) (2021-05-29T01:02:40Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - Looking Beyond Sentence-Level Natural Language Inference for Downstream
Tasks [15.624486319943015]
近年,自然言語推論(NLI)タスクが注目されている。
本稿では,この不満足な約束を,質問応答(QA)とテキスト要約という2つの下流タスクのレンズから検討する。
我々は、NLIデータセットとこれらの下流タスクの主な違いが前提の長さに関係していると推測する。
論文 参考訳(メタデータ) (2020-09-18T21:44:35Z) - FewJoint: A Few-shot Learning Benchmark for Joint Language Understanding [55.38905499274026]
機械学習は、機械学習における重要なステップの1つだ。
FewJointは、NLP用のFew-Shot Learningベンチマークである。
論文 参考訳(メタデータ) (2020-09-17T08:17:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。