論文の概要: Design and Development of a Web-based Tool for Inpainting of Dissected
Aortae in Angiography Images
- arxiv url: http://arxiv.org/abs/2005.02760v1
- Date: Wed, 6 May 2020 12:22:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 05:51:51.515262
- Title: Design and Development of a Web-based Tool for Inpainting of Dissected
Aortae in Angiography Images
- Title(参考訳): 血管造影画像における解離大動脈の塗布用Webツールの設計と開発
- Authors: Alexander Prutsch, Antonio Pepe, Jan Egger
- Abstract要約: 提案した塗布ツールは、大動脈解離を塗布するタスクに基づいてトレーニングされたニューラルネットワークを組み合わせたものである。
ツールをWebアプリケーションとして設計することにより、ニューラルネットワークの使用を簡素化し、初期学習曲線を小さくする。
- 参考スコア(独自算出の注目度): 69.14026408176609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical imaging is an important tool for the diagnosis and the evaluation of
an aortic dissection (AD); a serious condition of the aorta, which could lead
to a life-threatening aortic rupture. AD patients need life-long medical
monitoring of the aortic enlargement and of the disease progression, subsequent
to the diagnosis of the aortic dissection. Since there is a lack of
'healthy-dissected' image pairs from medical studies, the application of
inpainting techniques offers an alternative source for generating them by doing
a virtual regression from dissected aortae to healthy aortae; an indirect way
to study the origin of the disease. The proposed inpainting tool combines a
neural network, which was trained on the task of inpainting aortic dissections,
with an easy-to-use user interface. To achieve this goal, the inpainting tool
has been integrated within the 3D medical image viewer of StudierFenster
(www.studierfenster.at). By designing the tool as a web application, we
simplify the usage of the neural network and reduce the initial learning curve.
- Abstract(参考訳): 心臓画像検査は大動脈解離(AD)の診断と評価に重要なツールであり,大動脈の重篤な状態であり,大動脈破裂の寿命を延ばす可能性がある。
AD患者は,大動脈解離の診断後,大動脈拡大と疾患進行の持続的モニタリングが必要である。
医学研究から「健康な」画像対が欠如しているため、塗装技術の適用は、解離した大動脈から健康な大動脈への仮想回帰、すなわち疾患の起源を研究する間接的な方法によって、それらを生成するための代替のソースを提供する。
提案する塗装ツールは,大動脈解離の手術で訓練されたニューラルネットワークと,使いやすいユーザインターフェースを組み合わせたものだ。
この目的を達成するため、インペイントツールはStudierFenster(www.studierfenster.at)の3D画像ビューアに統合されている。
webアプリケーションとしてツールを設計することにより、ニューラルネットワークの使用を簡素化し、初期学習曲線を低減する。
関連論文リスト
- Adversarial-Robust Transfer Learning for Medical Imaging via Domain
Assimilation [17.46080957271494]
医用画像が公開されていないため、現代のアルゴリズムは、大量の自然画像に基づいて事前訓練されたモデルに依存するようになった。
自然画像と医療画像の間に重要なエムドメインの相違があり、AIモデルは敵の攻撃に対するエムの脆弱性を高める。
本稿では,テクスチャと色適応を伝達学習に導入する Em ドメイン同化手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T06:39:15Z) - Spatiotemporal Disentanglement of Arteriovenous Malformations in Digital
Subtraction Angiography [37.44819725897024]
本提案手法は, 船舶の自動分類による臨界情報を強調することにより, デジタルサブトラクション血管造影(DSA)画像シリーズを向上することを目的としている。
本法は, 臨床用DSA画像シリーズを用いて検討し, 動脈と静脈の効率的な鑑別を実証した。
論文 参考訳(メタデータ) (2024-02-15T00:29:53Z) - Object Detection for Automated Coronary Artery Using Deep Learning [0.0]
本稿では,冠動脈狭窄の部位を正確に同定するために,X線血管造影画像の物体検出法を応用した。
このモデルにより,狭窄箇所の自動的かつリアルタイムな検出が可能となり,決定プロセスの重要かつ機密性の高い支援が可能となった。
論文 参考訳(メタデータ) (2023-12-19T13:14:52Z) - HistoColAi: An Open-Source Web Platform for Collaborative Digital
Histology Image Annotation with AI-Driven Predictive Integration [1.5291251918989404]
デジタル病理は、その多くの利点により、病理ワークフローの標準となっている。
深層学習に基づく画像解析手法の最近の進歩は、デジタル病理学の潜在的助けとなる。
本稿では,デジタル化された組織像を視覚化・注釈するツールを効率的に提供するWebサービスを提案する。
論文 参考訳(メタデータ) (2023-07-11T10:41:09Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Generation of Artificial CT Images using Patch-based Conditional
Generative Adversarial Networks [0.0]
本稿では,条件付き判別器を用いた生成対向ネットワークを用いた画像生成手法を提案する。
心電図(CT)画像におけるGAN強調医用画像生成の可能性について検討した。
論文 参考訳(メタデータ) (2022-05-19T20:29:25Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。