論文の概要: Fault Tree Analysis: Identifying Maximum Probability Minimal Cut Sets
with MaxSAT
- arxiv url: http://arxiv.org/abs/2005.03003v1
- Date: Tue, 5 May 2020 19:47:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 14:42:16.781037
- Title: Fault Tree Analysis: Identifying Maximum Probability Minimal Cut Sets
with MaxSAT
- Title(参考訳): 断層木解析:MaxSATによる最大確率最小カットセットの同定
- Authors: Mart\'in Barr\`ere and Chris Hankin
- Abstract要約: 我々は,MPMCS問題を重み付き部分最大SAT問題としてモデル化し,並列SAT解決アーキテクチャを用いて解決する。
オープンソースツールで得られた結果は,このアプローチが効率的かつ効率的であることを示唆している。
- 参考スコア(独自算出の注目度): 0.342658286826597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a novel MaxSAT-based technique to compute Maximum
Probability Minimal Cut Sets (MPMCSs) in fault trees. We model the MPMCS
problem as a Weighted Partial MaxSAT problem and solve it using a parallel
SAT-solving architecture. The results obtained with our open source tool
indicate that the approach is effective and efficient.
- Abstract(参考訳): 本稿では,断層木における最大確率最小カットセット(MPMCS)を計算するためのMaxSATベースの新しい手法を提案する。
我々は,MPMCS問題を重み付き部分最大SAT問題としてモデル化し,並列SAT解決アーキテクチャを用いて解決する。
オープンソースツールで得られた結果は,このアプローチが効率的かつ効率的であることを示している。
関連論文リスト
- Certified MaxSAT Preprocessing [9.717669529984349]
MaxSATはNP-hard最適化問題の解決に有効なアプローチとなっている。
MaxSATソルバの正確性を保証することは、依然として重要な関心事である。
そこで本研究では,最新のMaxSATプリプロセッシング手法の正当性を証明するために,擬似ブール検定ロギングをどのように利用できるかを示す。
論文 参考訳(メタデータ) (2024-04-26T10:55:06Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
我々は、様々な武器の報酬間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
特に、様々な武器の報酬の間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
論文 参考訳(メタデータ) (2023-12-19T13:17:43Z) - UpMax: User partitioning for MaxSAT [2.2022484178680872]
パーティショニングは、不満に基づくMaxSATアルゴリズムのパフォーマンスに大きな影響を与える。
本稿では,分割処理をMaxSATの解法から切り離すUpMaxという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-25T15:50:00Z) - Towards Tackling MaxSAT by Combining Nested Monte Carlo with Local
Search [10.70006528984961]
UCTMAXSAT上でのアルゴリズム的バリエーションを2つ紹介する。
まず、Nested Monte Carlo Searchアルゴリズムにインスパイアされた木探索のネストは、ベンチマークのほとんどのインスタンスタイプに有効である。
第二に、SLSの静的フリップ制限を用いることで、理想的な予算はインスタンスサイズに大きく依存し、動的に設定することを提案する。
論文 参考訳(メタデータ) (2023-02-26T03:37:26Z) - DPMS: An ADD-Based Symbolic Approach for Generalized MaxSAT Solving [45.21499915442282]
本稿では,ハイブリッド制約を用いた一般化MaxSAT問題の解法について,新しい動的プログラミング手法を提案する。
我々の汎用フレームワークは、MaxSAT、Min-MaxSAT、MinSATといったCNF-MaxSATの多くの一般化をハイブリッド制約で認めている。
実験の結果、DPMSは様々な手法に基づく他のアルゴリズムがすべて失敗し、特定の問題を迅速に解決できることがわかった。
論文 参考訳(メタデータ) (2022-05-08T00:31:53Z) - Transformer-based Machine Learning for Fast SAT Solvers and Logic
Synthesis [63.53283025435107]
CNFベースのSATとMaxSATは論理合成と検証システムの中心である。
そこで本研究では,Transformerアーキテクチャから派生したワンショットモデルを用いて,MaxSAT問題の解法を提案する。
論文 参考訳(メタデータ) (2021-07-15T04:47:35Z) - Incomplete MaxSAT Approaches for Combinatorial Testing [0.0]
本稿では,最小長の制約付き混合被覆アレイを構築するためのSAT(Satifiability)に基づくアプローチを提案する。
この問題はシステム障害検出のためのコンビネータテストの中心である。
論文 参考訳(メタデータ) (2021-05-26T14:00:56Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
分割関数やMAP推定をペアワイズMRFで効率的に計算する手法を提案する。
一般のバイナリMRFから完全多クラス設定への半定緩和を拡張し、解法を用いて再び効率的に解けるようなコンパクトな半定緩和を開発する。
論文 参考訳(メタデータ) (2020-12-04T15:36:29Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。