Convolutional Sparse Support Estimator Based Covid-19 Recognition from
X-ray Images
- URL: http://arxiv.org/abs/2005.04014v1
- Date: Fri, 8 May 2020 13:11:40 GMT
- Title: Convolutional Sparse Support Estimator Based Covid-19 Recognition from
X-ray Images
- Authors: Mehmet Yamac, Mete Ahishali, Aysen Degerli, Serkan Kiranyaz, Muhammad
E. H. Chowdhury, Moncef Gabbouj
- Abstract summary: Coronavirus disease (Covid-19) has been the main agenda of the whole world since it came in sight in December 2019.
X-ray imaging is a common and easily accessible tool that has great potential for Covid-19 diagnosis.
Recent studies in this domain produced not so satisfactory results due to the limited datasets available for training.
- Score: 23.579399360004786
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Coronavirus disease (Covid-19) has been the main agenda of the whole world
since it came in sight in December 2019. It has already caused thousands of
causalities and infected several millions worldwide. Any technological tool
that can be provided to healthcare practitioners to save time, effort, and
possibly lives has crucial importance. The main tools practitioners currently
use to diagnose Covid-19 are Reverse Transcription-Polymerase Chain reaction
(RT-PCR) and Computed Tomography (CT), which require significant time,
resources and acknowledged experts. X-ray imaging is a common and easily
accessible tool that has great potential for Covid-19 diagnosis. In this study,
we propose a novel approach for Covid-19 recognition from chest X-ray images.
Despite the importance of the problem, recent studies in this domain produced
not so satisfactory results due to the limited datasets available for training.
Recall that Deep Learning techniques can generally provide state-of-the-art
performance in many classification tasks when trained properly over large
datasets, such data scarcity can be a crucial obstacle when using them for
Covid-19 detection. Alternative approaches such as representation-based
classification (collaborative or sparse representation) might provide
satisfactory performance with limited size datasets, but they generally fall
short in performance or speed compared to Machine Learning methods. To address
this deficiency, Convolution Support Estimation Network (CSEN) has recently
been proposed as a bridge between model-based and Deep Learning approaches by
providing a non-iterative real-time mapping from query sample to ideally sparse
representation coefficient' support, which is critical information for class
decision in representation based techniques.
Related papers
- Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Multi-Feature Vision Transformer via Self-Supervised Representation
Learning for Improvement of COVID-19 Diagnosis [2.3513645401551333]
We study the effectiveness of self-supervised learning in the context of diagnosing COVID-19 disease from CXR images.
We deploy a cross-attention mechanism to learn information from both original CXR images and corresponding enhanced local phase CXR images.
We demonstrate the performance of the baseline self-supervised learning models can be further improved by leveraging the local phase-based enhanced CXR images.
arXiv Detail & Related papers (2022-08-03T05:02:47Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - Deep survival analysis with longitudinal X-rays for COVID-19 [16.208623403845497]
We propose a deep learning approach that naturally incorporates multiple, time-dependent imaging studies as well as non-imaging data into time-to-event analysis.
Our techniques are benchmarked on a clinical dataset of 1,894 COVID-19 patients, and show that image sequences significantly improve predictions.
arXiv Detail & Related papers (2021-08-22T05:28:15Z) - Covid-19 Detection from Chest X-ray and Patient Metadata using Graph
Convolutional Neural Networks [6.420262246029286]
We propose a novel Graph Convolution Neural Network (GCN) that is capable of identifying bio-markers of Covid-19 pneumonia.
The proposed method exploits important relational knowledge between data instances and their features using graph representation and applies convolution to learn the graph data.
arXiv Detail & Related papers (2021-05-20T13:13:29Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Towards an Effective and Efficient Deep Learning Model for COVID-19
Patterns Detection in X-ray Images [2.21653002719733]
The main goal of this work is to propose an accurate yet efficient method for the problem of COVID-19 screening in chest X-rays.
A dataset of 13,569 X-ray images divided into healthy, non-COVID-19 pneumonia, and COVID-19 patients is used to train the proposed approaches.
Results: The proposed approach was able to produce a high-quality model, with an overall accuracy of 93.9%, COVID-19, sensitivity of 96.8% and positive prediction of 100%.
arXiv Detail & Related papers (2020-04-12T23:26:56Z) - Unveiling COVID-19 from Chest X-ray with deep learning: a hurdles race
with small data [8.253442222027134]
The possibility to use widespread and simple chest X-ray (CXR) imaging for early screening of COVID-19 patients is attracting much interest.
We provide insights and raise warnings on what is reasonable to expect by applying deep-learning to COVID classification of CXR images.
arXiv Detail & Related papers (2020-04-11T13:58:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.