Advances in Quantum Deep Learning: An Overview
- URL: http://arxiv.org/abs/2005.04316v1
- Date: Fri, 8 May 2020 23:36:50 GMT
- Title: Advances in Quantum Deep Learning: An Overview
- Authors: Siddhant Garg and Goutham Ramakrishnan
- Abstract summary: We review the different schemes proposed to model quantum neural networks (QNNs) and other variants like quantum convolutional networks (QCNNs)
We briefly describe the recent progress in quantum inspired classic deep learning algorithms and their applications to natural language processing.
- Score: 9.188318506016898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The last few decades have seen significant breakthroughs in the fields of
deep learning and quantum computing. Research at the junction of the two fields
has garnered an increasing amount of interest, which has led to the development
of quantum deep learning and quantum-inspired deep learning techniques in
recent times. In this work, we present an overview of advances in the
intersection of quantum computing and deep learning by discussing the technical
contributions, strengths and similarities of various research works in this
domain. To this end, we review and summarise the different schemes proposed to
model quantum neural networks (QNNs) and other variants like quantum
convolutional networks (QCNNs). We also briefly describe the recent progress in
quantum inspired classic deep learning algorithms and their applications to
natural language processing.
Related papers
- Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - A Survey on Quantum Reinforcement Learning [2.5882725323376112]
Quantum reinforcement learning is an emerging field at the intersection of quantum computing and machine learning.
With a focus on already available noisy intermediate-scale quantum devices, these include variational quantum circuits acting as function approximators.
In addition, we survey quantum reinforcement learning algorithms based on future fault-tolerant hardware, some of which come with a provable quantum advantage.
arXiv Detail & Related papers (2022-11-07T11:25:47Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum Neural Network Classifiers: A Tutorial [1.4567067583556714]
We focus on quantum neural networks in the form of parameterized quantum circuits.
We will mainly discuss different structures and encoding strategies of quantum neural networks for supervised learning tasks.
benchmark their performance utilizing Yao.jl, a quantum simulation package written in Julia Language.
arXiv Detail & Related papers (2022-06-06T18:00:01Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms.
We discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning.
arXiv Detail & Related papers (2022-04-08T17:48:59Z) - Quantum neural networks force fields generation [0.0]
We design a quantum neural network architecture and apply it successfully to different molecules of growing complexity.
The quantum models exhibit larger effective dimension with respect to classical counterparts and can reach competitive performances.
arXiv Detail & Related papers (2022-03-09T12:10:09Z) - Quantum Neural Networks: Concepts, Applications, and Challenges [11.370663646213606]
Quantum deep learning is a research field for the use of quantum computing techniques for training deep neural networks.
This paper explains the backgrounds and basic principles of quantum deep learning and also introduces major achievements.
arXiv Detail & Related papers (2021-08-02T04:32:15Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Reinforcement Learning with Quantum Variational Circuits [0.0]
This work explores the potential for quantum computing to facilitate reinforcement learning problems.
Specifically, we investigate the use of quantum variational circuits, a form of quantum machine learning.
Results indicate both hybrid and pure quantum variational circuit have the ability to solve reinforcement learning tasks with a smaller parameter space.
arXiv Detail & Related papers (2020-08-15T00:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.