論文の概要: BOP-Elites, a Bayesian Optimisation algorithm for Quality-Diversity
search
- arxiv url: http://arxiv.org/abs/2005.04320v1
- Date: Fri, 8 May 2020 23:49:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 12:27:10.687687
- Title: BOP-Elites, a Bayesian Optimisation algorithm for Quality-Diversity
search
- Title(参考訳): 品質多様性探索のためのベイズ最適化アルゴリズムBOP-Elites
- Authors: Paul Kent and Juergen Branke
- Abstract要約: 本稿では,エリートアルゴリズム(BOP-Elites)のベイズ最適化を提案する。
機能領域のユーザ定義領域を‘ニッチ’として考えることで、ニッチ毎に最適なソリューションを見つけることが私たちのタスクになります。
得られたアルゴリズムは、特徴空間におけるニッチに属する探索空間の部分を特定し、ニッチごとに最適な解を見つけるのに非常に効果的である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quality Diversity (QD) algorithms such as MAP-Elites are a class of
optimisation techniques that attempt to find a set of high-performing points
from an objective function while enforcing behavioural diversity of the points
over one or more interpretable, user chosen, feature functions.
In this paper we propose the Bayesian Optimisation of Elites (BOP-Elites)
algorithm that uses techniques from Bayesian Optimisation to explicitly model
both quality and diversity with Gaussian Processes. By considering user defined
regions of the feature space as 'niches' our task is to find the optimal
solution in each niche. We propose a novel acquisition function to
intelligently choose new points that provide the highest expected improvement
to the ensemble problem of identifying the best solution in every niche. In
this way each function evaluation enriches our modelling and provides insight
to the whole problem, naturally balancing exploration and exploitation of the
search space. The resulting algorithm is very effective in identifying the
parts of the search space that belong to a niche in feature space, and finding
the optimal solution in each niche. It is also significantly more sample
efficient than simpler benchmark approaches. BOP-Elites goes further than
existing QD algorithms by quantifying the uncertainty around our predictions
and offering additional illumination of the search space through surrogate
models.
- Abstract(参考訳): MAP-Elites (Quality Diversity) のようなQDアルゴリズムは、1つ以上の解釈可能な、ユーザ選択された特徴関数上の点の振る舞いの多様性を強制しながら、目的関数からハイパフォーマンスな点のセットを見つけようとする最適化手法のクラスである。
本稿では、ベイズ最適化の手法を用いて、ガウス過程による品質と多様性の両方を明示的にモデル化するベイズ最適化(BOP-Elites)アルゴリズムを提案する。
機能空間のユーザ定義領域を‘ニッチ’として考えることで、我々のタスクは各ニッチで最適なソリューションを見つけることです。
本稿では,すべてのニッチにおいて最良解を同定するアンサンブル問題に対して,最も期待できる改善点をインテリジェントに選択する新しい獲得関数を提案する。
このようにして、各関数評価は我々のモデリングを強化し、自然に探索空間の探索と利用のバランスを取りながら、問題全体の洞察を提供する。
得られたアルゴリズムは、特徴空間におけるニッチに属する探索空間の部分を特定し、ニッチごとに最適な解を見つけるのに非常に効果的である。
また、単純なベンチマークアプローチよりもかなりサンプル効率が良い。
BOP-Elitesは、我々の予測に関する不確実性を定量化し、サロゲートモデルによる探索空間のさらなる照明を提供することにより、既存のQDアルゴリズムよりも優れている。
関連論文リスト
- A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective Continuous Optimization [4.173197621837912]
単目的連続ブラックボックス最適化の分野におけるアルゴリズム選択への重要な貢献について概説する。
自動アルゴリズム選択、構成、性能予測のための機械学習モデルについて検討する。
論文 参考訳(メタデータ) (2024-06-08T11:11:14Z) - Quality-Diversity Algorithms Can Provably Be Helpful for Optimization [24.694984679399315]
QD(Quality-Diversity)アルゴリズムは、ハイパフォーマンスだが多様なソリューションのセットを見つけることを目的としている。
本稿では,厳密な実行時間解析によってQDアルゴリズムの最適化能力に光を当てようとしている。
論文 参考訳(メタデータ) (2024-01-19T07:40:24Z) - Gradient-Informed Quality Diversity for the Illumination of Discrete
Spaces [7.799824794686343]
品質多様性(QD)アルゴリズムは、一組の局所最適化ではなく、多種多様かつ高性能なソリューションの大規模なコレクションを探すために提案されている。
本稿では、離散探索空間上の微分可能関数でQDを拡張するグラディエント・インフォームド・ディスクレット・エミッタ(ME-GIDE)を提案する。
我々は,タンパク質設計や離散潜在空間照明を含む挑戦的なベンチマークにおいて,本手法がすべてのベンチマークにおいて最先端QDアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2023-06-08T12:04:52Z) - Rank-Based Learning and Local Model Based Evolutionary Algorithm for High-Dimensional Expensive Multi-Objective Problems [1.0499611180329806]
提案アルゴリズムは, ランクベース学習, ハイパーボリュームベース非支配探索, 比較的スパースな対象空間における局所探索の3つの部分からなる。
地熱貯留層熱抽出最適化におけるベンチマーク問題と実世界の応用の実験的結果は,提案アルゴリズムが優れた性能を示すことを示すものである。
論文 参考訳(メタデータ) (2023-04-19T06:25:04Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Local policy search with Bayesian optimization [73.0364959221845]
強化学習は、環境との相互作用によって最適な政策を見つけることを目的としている。
局所探索のための政策勾配は、しばしばランダムな摂動から得られる。
目的関数の確率モデルとその勾配を用いたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-06-22T16:07:02Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
多くの現実世界では、T関数の評価の予算を考えると、高価なブラックボックス関数 f の性質を推測したい。
本稿では,アルゴリズムの出力に対して相互情報を最大化するクエリを逐次選択する手法InfoBAXを提案する。
これらの問題に対してInfoBAXは、元のアルゴリズムで要求されるより500倍少ないクエリをfに使用する。
論文 参考訳(メタデータ) (2021-04-19T17:22:11Z) - Quality-Diversity Optimization: a novel branch of stochastic
optimization [5.677685109155078]
マルチモーダル最適化アルゴリズムは、複数のことができる検索空間で最も高いピークを検索します。
品質多様性アルゴリズムは、進化的計算ツールボックスに最近追加されたもので、単一の局所光学系を探索するだけでなく、検索空間を照らそうとする。
論文 参考訳(メタデータ) (2020-12-08T09:52:50Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。