論文の概要: CFDNet: a deep learning-based accelerator for fluid simulations
- arxiv url: http://arxiv.org/abs/2005.04485v1
- Date: Sat, 9 May 2020 18:06:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 07:15:41.818189
- Title: CFDNet: a deep learning-based accelerator for fluid simulations
- Title(参考訳): CFDNet:流体シミュレーションのためのディープラーニングベースのアクセラレータ
- Authors: Octavi Obiols-Sales, Abhinav Vishnu, Nicholas Malaya, Aparna
Chandramowlishwaran
- Abstract要約: CFDは、飛行機の翼のリフトや自動車のドラッグなどの工学的な量の興味を予測するために使用される。
多くの興味あるシステムはCFDシミュレーションを評価するコストがかかるため、設計の最適化には不当に高価である。
本稿では,物理シミュレーションとディープラーニングを組み合わせたフレームワークCFDNetを紹介する。
- 参考スコア(独自算出の注目度): 1.5649420473539182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: CFD is widely used in physical system design and optimization, where it is
used to predict engineering quantities of interest, such as the lift on a plane
wing or the drag on a motor vehicle. However, many systems of interest are
prohibitively expensive for design optimization, due to the expense of
evaluating CFD simulations. To render the computation tractable, reduced-order
or surrogate models are used to accelerate simulations while respecting the
convergence constraints provided by the higher-fidelity solution. This paper
introduces CFDNet -- a physical simulation and deep learning coupled framework,
for accelerating the convergence of Reynolds Averaged Navier-Stokes
simulations. CFDNet is designed to predict the primary physical properties of
the fluid including velocity, pressure, and eddy viscosity using a single
convolutional neural network at its core. We evaluate CFDNet on a variety of
use-cases, both extrapolative and interpolative, where test geometries are
observed/not-observed during training. Our results show that CFDNet meets the
convergence constraints of the domain-specific physics solver while
outperforming it by 1.9 - 7.4x on both steady laminar and turbulent flows.
Moreover, we demonstrate the generalization capacity of CFDNet by testing its
prediction on new geometries unseen during training. In this case, the approach
meets the CFD convergence criterion while still providing significant speedups
over traditional domain-only models.
- Abstract(参考訳): CFDは物理的システム設計や最適化に広く使われており、飛行機の翼のリフトや自動車のドラッグのような工学的な量の興味を予測するために用いられる。
しかし,cfdシミュレーションの評価に費用がかかるため,設計最適化に非常に費用がかかるシステムが多い。
計算をトラクタブルにするために、高忠実度解の収束制約を尊重しながらシミュレーションを高速化するために、低次またはサロゲートモデルを用いる。
本稿では,Reynolds Averaged Navier-Stokesシミュレーションの収束を促進するための物理シミュレーションおよびディープラーニング結合フレームワークCFDNetを紹介する。
CFDNetは、コアに1つの畳み込みニューラルネットワークを用いて、速度、圧力、渦粘性を含む流体の物理特性を予測するように設計されている。
CFDNetは外挿と補間の両方の様々なユースケースで評価され,テストジオメトリはトレーニング中に観測・観測されない。
その結果,cfdnetは定常層流と乱流流の両方において1.9~7.4倍の収束制約を満たしていることがわかった。
さらに, cfdnet の一般化能力は, トレーニング中の新しい測地線上での予測をテストすることにより実証する。
この場合、アプローチはCFD収束基準を満たすが、従来のドメインのみのモデルよりも大きなスピードアップを提供する。
関連論文リスト
- PointSAGE: Mesh-independent superresolution approach to fluid flow predictions [0.0]
高分解能CFDシミュレーションは流体挙動や流れパターンに関する貴重な洞察を提供する。
解像度が大きくなると、計算データ要求と時間の増加が比例する。
複雑な流体の流れを学習し,シミュレーションを直接予測するメッシュ非依存のネットワークであるPointSAGEを提案する。
論文 参考訳(メタデータ) (2024-04-06T12:49:09Z) - Differentiable Turbulence II [0.0]
そこで我々は,Navier-Stokes方程式を解くために,ディープラーニングモデルを汎用有限要素数値スキームに統合するためのフレームワークを開発した。
学習したクロージャは、より微細なグリッド上の従来の大規模渦シミュレーションに匹敵する精度で10倍のスピードアップを達成できることを示す。
論文 参考訳(メタデータ) (2023-07-25T14:27:49Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
機械学習を用いて乱流シミュレーションのための低次/サロゲートモデルを開発することを目的としている。
異なるモデル構造が解析され、U-NET構造は標準FNOよりも精度と安定性が良い。
論文 参考訳(メタデータ) (2023-07-25T14:09:53Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Stacked Generative Machine Learning Models for Fast Approximations of
Steady-State Navier-Stokes Equations [1.4150517264592128]
種々の境界条件下で定常なナビエ・ストークス方程式を解くために弱教師付きアプローチを開発する。
ラベル付きシミュレーションデータを使わずに最先端の結果を得られる。
我々は、N-S方程式の数値解を生成する複雑さを増大させる積み重ねモデルを訓練する。
論文 参考訳(メタデータ) (2021-12-13T05:08:55Z) - Finite volume method network for acceleration of unsteady computational
fluid dynamics: non-reacting and reacting flows [0.0]
CFDシミュレーションを高速化するために,ユニークなネットワークアーキテクチャと物理インフォームド損失関数を備えたニューラルネットワークモデルを開発した。
反応フローデータセットでは、このネットワークモデルの計算速度はCFDソルバの約10倍の速さで測定された。
論文 参考訳(メタデータ) (2021-05-07T15:33:49Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - DeepCFD: Efficient Steady-State Laminar Flow Approximation with Deep
Convolutional Neural Networks [5.380828749672078]
DeepCFDは畳み込みニューラルネットワーク(CNN)ベースのモデルであり、非一様定常層流問題に対する解を効率的に近似する。
DeepCFDを用いることで、標準CFD手法と比較して最大3桁の高速化を低エラー率で実現した。
論文 参考訳(メタデータ) (2020-04-19T12:00:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。