論文の概要: Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations
- arxiv url: http://arxiv.org/abs/2208.01687v1
- Date: Tue, 2 Aug 2022 18:27:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-04 14:22:36.721212
- Title: Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations
- Title(参考訳): 高マッハオイラー方程式への加速解に対するニューラル基底関数
- Authors: David Witman, Alexander New, Hicham Alkendry, Honest Mrema
- Abstract要約: ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
- 参考スコア(独自算出の注目度): 63.8376359764052
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an approach to solving partial differential equations (PDEs) using
a set of neural networks which we call Neural Basis Functions (NBF). This NBF
framework is a novel variation of the POD DeepONet operator learning approach
where we regress a set of neural networks onto a reduced order Proper
Orthogonal Decomposition (POD) basis. These networks are then used in
combination with a branch network that ingests the parameters of the prescribed
PDE to compute a reduced order approximation to the PDE. This approach is
applied to the steady state Euler equations for high speed flow conditions
(mach 10-30) where we consider the 2D flow around a cylinder which develops a
shock condition. We then use the NBF predictions as initial conditions to a
high fidelity Computational Fluid Dynamics (CFD) solver (CFD++) to show faster
convergence. Lessons learned for training and implementing this algorithm will
be presented as well.
- Abstract(参考訳): 本稿では,神経基底関数(neural basis function, nbf)と呼ばれるニューラルネットワークを用いた偏微分方程式(pdes)の解法を提案する。
このNBFフレームワークはPOD DeepONet演算子学習アプローチの新たなバリエーションであり、ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に基づいて再生成する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
この手法は高速流れ条件(マッハ10-30)に対する安定状態オイラー方程式に適用され, 衝撃条件を呈するシリンダーまわりの2次元流れを考察する。
nbf予測を初期条件として高忠実度計算流体力学(cfd)ソルバ(cfd++)を用いてより高速な収束を示す。
このアルゴリズムのトレーニングと実装で学んだ教訓も提示される。
関連論文リスト
- Score-based Neural Ordinary Differential Equations for Computing Mean Field Control Problems [13.285775352653546]
本稿では,ディープニューラルネットワークに基づく一階および二階のスコア関数を表すニューラルディファレンシャル方程式のシステムを提案する。
本研究では,個々の雑音に対する平均粘性場制御(MFC)問題を,提案したニューラルODEシステムによって構成された制約のない最適化問題に再構成する。
論文 参考訳(メタデータ) (2024-09-24T21:45:55Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Neural Networks-based Random Vortex Methods for Modelling Incompressible Flows [0.0]
本稿では,(2D)非圧縮性ナビエ-ストークス方程式に対する解を近似するためのニューラルネットワークに基づく新しい手法を提案する。
このアルゴリズムは、ランダム渦力学の計算効率の良い定式化を利用する損失関数に基づいて、渦を近似する物理インフォームドニューラルネットワークを用いている。
論文 参考訳(メタデータ) (2024-05-22T14:36:23Z) - Solving the Discretised Multiphase Flow Equations with Interface
Capturing on Structured Grids Using Machine Learning Libraries [0.6299766708197884]
本稿では,機械学習ライブラリのツールと手法を用いて,離散化した多相流方程式を解く。
はじめて、(訓練されていない)畳み込みニューラルネットワークに基づくアプローチを用いて、多相流の有限要素判別を解くことができる。
論文 参考訳(メタデータ) (2024-01-12T18:42:42Z) - Burgers' pinns with implicit euler transfer learning [0.0]
バーガーズ方程式は、いくつかの現象の計算モデルにおいて確立されたテストケースである。
本稿では,バーガース方程式を解くために,暗黙のオイラー変換学習手法を用いた物理情報ニューラルネットワーク(PINN)の適用について述べる。
論文 参考訳(メタデータ) (2023-10-23T20:15:45Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
論文 参考訳(メタデータ) (2022-12-06T10:08:02Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。