論文の概要: A review of radar-based nowcasting of precipitation and applicable
machine learning techniques
- arxiv url: http://arxiv.org/abs/2005.04988v1
- Date: Mon, 11 May 2020 10:34:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 19:53:10.514085
- Title: A review of radar-based nowcasting of precipitation and applicable
machine learning techniques
- Title(参考訳): 降水量と応用機械学習技術のレーダベース流し込みの検討
- Authors: Rachel Prudden, Samantha Adams, Dmitry Kangin, Niall Robinson, Suman
Ravuri, Shakir Mohamed, Alberto Arribas
- Abstract要約: ノウキャスト(英:nowcast)とは、天気予報の一種で、概して2時間以内の短時間で天気予報を行う。
この種の気象予報は、商業航空、公共や屋外のイベント、建設産業に重要な応用がある。
環境科学と機械学習コミュニティの新たなパートナーシップによって、新たな進歩が可能になる。
- 参考スコア(独自算出の注目度): 3.0581668008670673
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A 'nowcast' is a type of weather forecast which makes predictions in the very
short term, typically less than two hours - a period in which traditional
numerical weather prediction can be limited. This type of weather prediction
has important applications for commercial aviation; public and outdoor events;
and the construction industry, power utilities, and ground transportation
services that conduct much of their work outdoors. Importantly, one of the key
needs for nowcasting systems is in the provision of accurate warnings of
adverse weather events, such as heavy rain and flooding, for the protection of
life and property in such situations. Typical nowcasting approaches are based
on simple extrapolation models applied to observations, primarily rainfall
radar. In this paper we review existing techniques to radar-based nowcasting
from environmental sciences, as well as the statistical approaches that are
applicable from the field of machine learning. Nowcasting continues to be an
important component of operational systems and we believe new advances are
possible with new partnerships between the environmental science and machine
learning communities.
- Abstract(参考訳): ノウキャスト(英:nowcast)は、気象予報の一種で、通常は2時間未満で、従来の数値的な天気予報が制限される期間である。
この種の気象予報は、商業航空、公共および屋外のイベント、建設産業、電力公益事業、および屋外での仕事の多くを行う地上輸送サービスにおいて重要な用途を持っている。
重要なのは、このような状況下での生活と財産の保護のために、大雨や洪水などの悪天候イベントの正確な警告を提供することである。
典型的な流し込み手法は、観測、主に降雨レーダに適用される単純な外挿モデルに基づいている。
本稿では,環境科学からのレーダベース放送の既存の手法と,機械学習の分野から適用可能な統計的アプローチについて述べる。
nowcastingは引き続き運用システムの重要なコンポーネントであり、環境科学と機械学習コミュニティの新たなパートナーシップによって、新たな進歩が可能になると信じています。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - Skilful Precipitation Nowcasting Using NowcastNet [0.0]
降水今流しは、農業、輸送、公衆衛生、安全等に影響を及ぼすような事態に備えるのに役立ちます。
我々は最近提案した,物理条件の深い生成ネットワークである NowcastNet を用いて,衛星画像を用いたヨーロッパ各地の降水量の予測を行った。
論文 参考訳(メタデータ) (2023-11-29T11:24:52Z) - Transformer-based nowcasting of radar composites from satellite images
for severe weather [45.0983299269404]
衛星データを用いた地上レーダー画像系列を最大2時間リードするトランスフォーマーモデルを提案する。
厳しい気象条件を反映したデータセットに基づいてトレーニングされたこのモデルは、異なる気象現象の下で発生したレーダーフィールドを予測する。
このモデルは、レーダータワーを明示的に必要とせずに、大きなドメインにまたがる降水を支援することができる。
論文 参考訳(メタデータ) (2023-10-30T13:17:38Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Deep Learning for Rain Fade Prediction in Satellite Communications [6.619650459583444]
視線衛星システム、無人航空機、高高度プラットフォーム、マイクロ波リンクは雨の影響を受けやすい。
これらのシステムの降雨量予測は、降雨量発生前の地上ゲートウェイを積極的に切り替えてシームレスなサービスを維持するために重要である。
衛星画像データとレーダー画像データとリンク電力測定を用いて将来の雨害を予測するディープラーニングアーキテクチャが提案されている。
論文 参考訳(メタデータ) (2021-10-02T00:43:02Z) - Skillful Precipitation Nowcasting using Deep Generative Models of Radar [24.220892855431494]
本稿では,レーダーからの降水確率予測のためのディープジェネラティブモデルを提案する。
我々のモデルは1536km×1280kmまでの領域で現実的かつ時間的に一貫した予測を行い、リードタイムは5~90分先である。
Met Officeの50名以上のエキスパート予測者による体系的評価では,2つの競合手法に対して88%のケースにおいて,その精度と有用性で第1位であった。
論文 参考訳(メタデータ) (2021-04-02T09:29:03Z) - Accurate and Clear Precipitation Nowcasting with Consecutive Attention
and Rain-map Discrimination [11.686939430992966]
本稿では,降水流の識別と注意の両方を含む新しい深層学習モデルを提案する。
このモデルは、レーダーデータと実際の雨データの両方を含む、新しく構築されたベンチマークデータセットで検討される。
論文 参考訳(メタデータ) (2021-02-16T14:22:54Z) - Smart Weather Forecasting Using Machine Learning:A Case Study in
Tennessee [2.9477900773805032]
本稿では,複数の気象観測所の過去のデータを利用して,シンプルな機械学習モデルを訓練する天気予報手法を提案する。
モデルの精度は、現在の最先端技術と併用するのに十分である。
論文 参考訳(メタデータ) (2020-08-25T02:41:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。