論文の概要: Accurate and Clear Precipitation Nowcasting with Consecutive Attention
and Rain-map Discrimination
- arxiv url: http://arxiv.org/abs/2102.08175v1
- Date: Tue, 16 Feb 2021 14:22:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 21:26:56.077424
- Title: Accurate and Clear Precipitation Nowcasting with Consecutive Attention
and Rain-map Discrimination
- Title(参考訳): 連続的注意と雨図識別による高精度・クリア降雨予報
- Authors: Ashesh, Buo-Fu Chen, Treng-Shi Huang, Boyo Chen, Chia-Tung Chang,
Hsuan-Tien Lin
- Abstract要約: 本稿では,降水流の識別と注意の両方を含む新しい深層学習モデルを提案する。
このモデルは、レーダーデータと実際の雨データの両方を含む、新しく構築されたベンチマークデータセットで検討される。
- 参考スコア(独自算出の注目度): 11.686939430992966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precipitation nowcasting is an important task for weather forecasting. Many
recent works aim to predict the high rainfall events more accurately with the
help of deep learning techniques, but such events are relatively rare. The
rarity is often addressed by formulations that re-weight the rare events.
Somehow such a formulation carries a side effect of making "blurry" predictions
in low rainfall regions and cannot convince meteorologists to trust its
practical usability. We fix the trust issue by introducing a discriminator that
encourages the prediction model to generate realistic rain-maps without
sacrificing predictive accuracy. Furthermore, we extend the nowcasting time
frame from one hour to three hours to further address the needs from
meteorologists. The extension is based on consecutive attentions across
different hours. We propose a new deep learning model for precipitation
nowcasting that includes both the discrimination and attention techniques. The
model is examined on a newly-built benchmark dataset that contains both radar
data and actual rain data. The benchmark, which will be publicly released, not
only establishes the superiority of the proposed model, but also is expected to
encourage future research on precipitation nowcasting.
- Abstract(参考訳): 降雨量予測は気象予報の重要な課題である。
最近の多くの研究は、深層学習技術の助けを借りて、高降雨イベントをより正確に予測することを目的としているが、比較的稀である。
ラリティーはしばしばレアイベントを再重み付けする定式化によって取り扱われる。
このような定式化は、低降雨地域で「青く」予測を行う副作用があり、気象学者にその実用性への信頼を説得することができない。
予測精度を犠牲にすることなく、予測モデルが現実的な雨量マップを生成するように促す識別器を導入することで、信頼の問題を修正します。
さらに,気象学者の要求に応えるために,現在放送されている時間枠を1時間から3時間に延長する。
延長は、異なる時間にわたって連続した注意に基づく。
本稿では,降水流の識別と注意の両方を含む新しい深層学習モデルを提案する。
このモデルは、レーダーデータと実際の雨データの両方を含む、新しく構築されたベンチマークデータセットで検討される。
公開されるこのベンチマークは、提案されたモデルの優位性を確立するだけでなく、今後の降水に関する研究を促進することが期待されています。
関連論文リスト
- PostCast: Generalizable Postprocessing for Precipitation Nowcasting via Unsupervised Blurriness Modeling [85.56969895866243]
本稿では,ぼやけた予測とそれに対応する土台真実のペアによるトレーニングを必要とせずに,ぼやけを解消するための教師なしポストプロセッシング手法を提案する。
非条件相関を任意のぼかしモードに適応させるため、ゼロショットのぼかしカーネル推定機構とオートスケールの denoise ガイダンス戦略を導入する。
論文 参考訳(メタデータ) (2024-10-08T08:38:23Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
本稿では,メソスケール降水分布と小規模パターンの予測を分離するために,決定的かつ確率的な部分からなるカスケードフレームワークCasCastを提案する。
CasCastは地域の極端降水量計のベースライン(+91.8%)をはるかに上回っている。
論文 参考訳(メタデータ) (2024-02-06T08:30:47Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Scaling transformer neural networks for skillful and reliable medium-range weather forecasting [23.249955524044392]
本稿では,標準変圧器バックボーンの変更を最小限に抑えつつ,気象予報の最先端性能であるStormerを紹介する。
Stormerの中核はランダムな予測目標であり、様々な時間間隔で天気のダイナミクスを予測するためにモデルを訓練する。
ウェザーベンチ2では、ストーマーは短距離から中距離の予測で競争力を発揮し、現在の手法を7日を超えて上回っている。
論文 参考訳(メタデータ) (2023-12-06T19:46:06Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
気象フィールドの1つのフレームを用いた3次元畳み込みニューラルネットワークは降水空間分布を予測することができることを示す。
このネットワークは、気象学の39年 (1980-2018) のデータと、連続した米国上空の毎日の降水に基づいて開発されている。
論文 参考訳(メタデータ) (2021-10-05T06:37:24Z) - Deep Learning for Rain Fade Prediction in Satellite Communications [6.619650459583444]
視線衛星システム、無人航空機、高高度プラットフォーム、マイクロ波リンクは雨の影響を受けやすい。
これらのシステムの降雨量予測は、降雨量発生前の地上ゲートウェイを積極的に切り替えてシームレスなサービスを維持するために重要である。
衛星画像データとレーダー画像データとリンク電力測定を用いて将来の雨害を予測するディープラーニングアーキテクチャが提案されている。
論文 参考訳(メタデータ) (2021-10-02T00:43:02Z) - Skillful Precipitation Nowcasting using Deep Generative Models of Radar [24.220892855431494]
本稿では,レーダーからの降水確率予測のためのディープジェネラティブモデルを提案する。
我々のモデルは1536km×1280kmまでの領域で現実的かつ時間的に一貫した予測を行い、リードタイムは5~90分先である。
Met Officeの50名以上のエキスパート予測者による体系的評価では,2つの競合手法に対して88%のケースにおいて,その精度と有用性で第1位であった。
論文 参考訳(メタデータ) (2021-04-02T09:29:03Z) - A review of radar-based nowcasting of precipitation and applicable
machine learning techniques [3.0581668008670673]
ノウキャスト(英:nowcast)とは、天気予報の一種で、概して2時間以内の短時間で天気予報を行う。
この種の気象予報は、商業航空、公共や屋外のイベント、建設産業に重要な応用がある。
環境科学と機械学習コミュニティの新たなパートナーシップによって、新たな進歩が可能になる。
論文 参考訳(メタデータ) (2020-05-11T10:34:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。