論文の概要: Statistical learning for sensor localization in wireless networks
- arxiv url: http://arxiv.org/abs/2005.05097v1
- Date: Mon, 11 May 2020 13:27:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 19:52:42.095517
- Title: Statistical learning for sensor localization in wireless networks
- Title(参考訳): 無線ネットワークにおけるセンサローカライゼーションの統計的学習
- Authors: Daniel Alshamaa, Farah Chehade, Paul Honeine
- Abstract要約: 本稿では,Wi-Fi信号を用いて屋内環境下で効率よく機能するゾーニング方式のローカライズ手法を提案する。
対象領域は複数のゾーンから構成されており、統計的学習に基づく観測モデルを用いてセンサのゾーンを決定することが目的である。
- 参考スコア(独自算出の注目度): 8.057006406834468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Indoor localization has become an important issue for wireless sensor
networks. This paper presents a zoning-based localization technique that uses
WiFi signals and works efficiently in indoor environments. The targeted area is
composed of several zones, the objective being to determine the zone of the
sensor using an observation model based on statistical learning.
- Abstract(参考訳): 無線センサネットワークにおける屋内ローカライズが重要な課題となっている。
本稿では,Wi-Fi信号を用いて屋内環境下で効率よく機能するゾーニング方式のローカライズ手法を提案する。
対象領域は複数のゾーンから構成されており、統計的学習に基づく観測モデルを用いてセンサのゾーンを決定することが目的である。
関連論文リスト
- DiffuBox: Refining 3D Object Detection with Point Diffusion [74.01759893280774]
本研究では,3次元物体の検出と局所化を確保するために,新しい拡散型ボックス精細化手法を提案する。
提案手法は,様々なドメイン適応設定下で評価し,その結果,異なるデータセット間での大幅な改善が示された。
論文 参考訳(メタデータ) (2024-05-25T03:14:55Z) - Improved Indoor Localization with Machine Learning Techniques for IoT
applications [0.0]
本研究では, 教師付き回帰器, 教師付き分類器, RSSIを用いた屋内位置推定のためのアンサンブル手法の3段階に機械学習アルゴリズムを適用した。
実験の結果は、屋内環境におけるローカライズ精度とロバスト性の観点から、異なる教師付き機械学習技術の有効性に関する洞察を与える。
論文 参考訳(メタデータ) (2024-02-18T02:55:19Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - LuViRA Dataset Validation and Discussion: Comparing Vision, Radio, and Audio Sensors for Indoor Localization [8.296768815428441]
本稿では,視覚,ラジオ,および音声に基づくローカライゼーションアルゴリズムのユニークな比較分析と評価を行う。
我々は、最近発表されたLund University Vision, Radio, and Audio (LuViRA)データセットを用いて、前述のセンサーの最初のベースラインを作成します。
屋内のローカライゼーションタスクに各センサを使用する際の課題をいくつか挙げる。
論文 参考訳(メタデータ) (2023-09-06T12:57:00Z) - A distributed neural network architecture for dynamic sensor selection
with application to bandwidth-constrained body-sensor networks [53.022158485867536]
ディープニューラルネットワーク(DNN)のための動的センサ選択手法を提案する。
データセット全体の固定選択ではなく、個々の入力サンプルに対して最適なセンササブセット選択を導出することができる。
無線センサネットワーク(WSN)の寿命を、各ノードの送信頻度に制約を加えることで、この動的選択をいかに利用できるかを示す。
論文 参考訳(メタデータ) (2023-08-16T14:04:50Z) - A deep learning approach to predict the number of k-barriers for
intrusion detection over a circular region using wireless sensor networks [3.6748639131154315]
無線センサネットワーク(WSN)は、国境地帯における侵入検知と監視の問題に対して実現可能な解決策である。
本稿では,高速な侵入検知・防止のためのkバリア数の正確な予測を行うために,完全接続型フィードフォワードニューラルネットワーク(ANN)に基づくディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-25T06:39:29Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFiベースのヒューマンアクション認識(HAR)は、スマートリビングやリモート監視といったアプリケーションにおいて、有望なソリューションと見なされている。
本稿では,無線機器からのWiFi信号を用いた動作を,多様なシナリオで直接認識する,エンド・ツー・エンドのGabor残差検知ネットワーク(GraSens)を提案する。
論文 参考訳(メタデータ) (2022-05-24T10:20:16Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - Multiple Hypothesis Testing Framework for Spatial Signals [42.95566109115774]
我々は,複数の仮説テストから派生した一般フレームワークを開発し,そのような領域を同定する。
予め特定されたレベルで偽発見率を制御しながら、異なる仮説に関連する空間格子点を同定する。
本稿では,モーメントのスペクトル法に基づいて局所的な偽発見率を推定する新しいデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2021-08-27T14:48:51Z) - Real-time Localization Using Radio Maps [59.17191114000146]
パスロスに基づく簡易かつ効果的なローカライゼーション法を提案する。
提案手法では, 受信した信号強度を, 既知の位置を持つ基地局の集合から報告する。
論文 参考訳(メタデータ) (2020-06-09T16:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。