Counterfactual Propagation for Semi-Supervised Individual Treatment
Effect Estimation
- URL: http://arxiv.org/abs/2005.05099v1
- Date: Mon, 11 May 2020 13:32:38 GMT
- Title: Counterfactual Propagation for Semi-Supervised Individual Treatment
Effect Estimation
- Authors: Shonosuke Harada and Hisashi Kashima
- Abstract summary: Individual treatment effect (ITE) represents the expected improvement in the outcome of taking a particular action to a particular target.
In this study, we consider a semi-supervised ITE estimation problem that exploits more easily-available unlabeled instances.
We propose counterfactual propagation, which is the first semi-supervised ITE estimation method.
- Score: 21.285425135761795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Individual treatment effect (ITE) represents the expected improvement in the
outcome of taking a particular action to a particular target, and plays
important roles in decision making in various domains. However, its estimation
problem is difficult because intervention studies to collect information
regarding the applied treatments (i.e., actions) and their outcomes are often
quite expensive in terms of time and monetary costs. In this study, we consider
a semi-supervised ITE estimation problem that exploits more easily-available
unlabeled instances to improve the performance of ITE estimation using small
labeled data. We combine two ideas from causal inference and semi-supervised
learning, namely, matching and label propagation, respectively, to propose
counterfactual propagation, which is the first semi-supervised ITE estimation
method. Experiments using semi-real datasets demonstrate that the proposed
method can successfully mitigate the data scarcity problem in ITE estimation.
Related papers
- Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
evaluating the average causal effect (ACE) of a treatment on an outcome often involves overcoming the challenges posed by confounding factors in observational studies.
Here, we introduce novel estimation strategies for the front-door criterion based on the targeted minimum loss-based estimation theory.
We demonstrate the applicability of these estimators to analyze the effect of early stage academic performance on future yearly income.
arXiv Detail & Related papers (2023-12-15T22:04:53Z) - Optimal Transport for Treatment Effect Estimation [42.50410909962438]
Estimating conditional average treatment effect from observational data is highly challenging due to the existence of treatment selection bias.
Prevalent methods mitigate this issue by aligning distributions of different treatment groups in the latent space.
We propose a principled approach named Entire Space CounterFactual Regression (ESCFR), which is a new take on optimal transport in the context of causality.
arXiv Detail & Related papers (2023-10-27T17:22:45Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
A notable gap exists in the evaluation of causal discovery methods, where insufficient emphasis is placed on downstream inference.
We evaluate seven established baseline causal discovery methods including a newly proposed method based on GFlowNets.
The results of our study demonstrate that some of the algorithms studied are able to effectively capture a wide range of useful and diverse ATE modes.
arXiv Detail & Related papers (2023-07-11T02:58:10Z) - Doubly Robust Estimation of Direct and Indirect Quantile Treatment
Effects with Machine Learning [0.0]
We suggest a machine learning estimator of direct and indirect quantile treatment effects under a selection-on-observables assumption.
The proposed method is based on the efficient score functions of the cumulative distribution functions of potential outcomes.
We also propose a multiplier bootstrap for statistical inference and show the validity of the multiplier.
arXiv Detail & Related papers (2023-07-03T14:27:15Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
We show that even in arguably the simplest setting, estimation under ignorability assumptions can be misleading.
We consider two popular machine learning benchmark datasets for evaluation of heterogeneous treatment effect estimators.
We highlight that the inherent characteristics of the benchmark datasets favor some algorithms over others.
arXiv Detail & Related papers (2021-07-28T13:21:27Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - Confounding Feature Acquisition for Causal Effect Estimation [6.174721516017138]
We frame this challenge as a problem of feature acquisition of confounding features for causal inference.
Our goal is to prioritize acquiring values for a fixed and known subset of missing confounders in samples that lead to efficient average treatment effect estimation.
arXiv Detail & Related papers (2020-11-17T16:28:43Z) - Robust and flexible learning of a high-dimensional classification rule
using auxiliary outcomes [2.92281985958308]
We develop a transfer learning approach to estimating a high-dimensional linear decision rule with the presence of auxiliary outcomes.
We show that the final estimator can achieve a lower estimation error than the one using only the single outcome of interest.
arXiv Detail & Related papers (2020-11-11T01:14:33Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.