Aortic Pressure Forecasting with Deep Sequence Learning
- URL: http://arxiv.org/abs/2005.05502v3
- Date: Fri, 16 Oct 2020 18:53:02 GMT
- Title: Aortic Pressure Forecasting with Deep Sequence Learning
- Authors: Eliza Huang, Rui Wang, Uma Chandrasekaran, Rose Yu
- Abstract summary: Mean aortic pressure (MAP) is a major determinant of perfusion in all organs systems.
The aim of this study was to forecast the mean aortic pressure five minutes in advance, using the 25 Hz time series data of previous five minutes as input.
- Score: 23.571482805855755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mean aortic pressure (MAP) is a major determinant of perfusion in all organs
systems. The ability to forecast MAP would enhance the ability of physicians to
estimate prognosis of the patient and assist in early detection of hemodynamic
instability. However, forecasting MAP is challenging because the blood pressure
(BP) time series is noisy and can be highly non-stationary. The aim of this
study was to forecast the mean aortic pressure five minutes in advance, using
the 25 Hz time series data of previous five minutes as input. We provide a
benchmark study of different deep learning models for BP forecasting. We
investigate a left ventricular dwelling transvalvular micro-axial device, the
Impella, in patients undergoing high-risk percutaneous intervention. The
Impella provides hemodynamic support, thus aiding in native heart function
recovery. It is also equipped with pressure sensors to capture high frequency
MAP measurements at origin, instead of peripherally. Our dataset and the
clinical application is novel in the BP forecasting field. We performed a
comprehensive study on time series with increasing, decreasing, and stationary
trends. The experiments show that recurrent neural networks with Legendre
Memory Unit achieve the best performance with an overall forecasting error of
1.8 mmHg.
Related papers
- A Multi-scenario Attention-based Generative Model for Personalized Blood Pressure Time Series Forecasting [6.311504297463515]
Continuous blood pressure (BP) monitoring is essential for timely diagnosis and intervention in critical care settings.
In this work, we propose a personalized BP forecasting model mainly using electrocardiogram (ECG) and photoplethysmogram ( photoplethysmogram) signals.
Experiments are conducted on datasets collected from three diverse scenarios with BP measurements from 60 subjects total.
arXiv Detail & Related papers (2024-09-07T04:24:15Z) - Adversarial Contrastive Learning Based Physics-Informed Temporal Networks for Cuffless Blood Pressure Estimation [37.94387581519217]
We introduce a novel physics-informed temporal network(PITN) with adversarial contrastive learning to enable precise BP estimation with very limited data.
We then employ adversarial training to generate extra physiological time series data, improving PITN's robustness in the face of sparse subject-specific data.
arXiv Detail & Related papers (2024-08-16T02:17:21Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - TransfoRhythm: A Transformer Architecture Conductive to Blood Pressure Estimation via Solo PPG Signal Capturing [5.255373360156652]
Blood pressure (BP) serves as a critical health indicator for accurate and timely diagnosis and/or treatment of hypertension.
Recent advancements in Artificial Intelligence (AI) and Deep Neural Networks (DNNs) have led to a surge of interest in developing data-driven solutions.
This paper represents the first study to apply the MIMIC IV dataset for cuff-less BP estimation.
arXiv Detail & Related papers (2024-04-15T00:36:33Z) - Predicting Pulmonary Hypertension by Electrocardiograms Using Machine
Learning [0.0]
Pulmonary hypertension (PH) is a condition of high blood pressure that affects the arteries in the lungs and the right side of the heart.
The goal of this project is to create a neural network model which can process an ECG signal and detect the presence of PH with a confidence probability.
arXiv Detail & Related papers (2023-04-24T21:00:16Z) - A Deep Learning Approach to Predict Blood Pressure from PPG Signals [10.028103259763352]
Blood Pressure (BP) is one of the four primary vital signs indicating the status of the body's vital (life-sustaining) functions.
We propose an advanced data-driven approach that uses a three-layer deep neural network to estimate BP based on PPG signals.
arXiv Detail & Related papers (2021-07-30T22:45:34Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.