論文の概要: Do not let the history haunt you -- Mitigating Compounding Errors in
Conversational Question Answering
- arxiv url: http://arxiv.org/abs/2005.05754v1
- Date: Tue, 12 May 2020 13:29:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 19:25:58.566041
- Title: Do not let the history haunt you -- Mitigating Compounding Errors in
Conversational Question Answering
- Title(参考訳): 歴史を悩ませるな -- 会話型質問応答における複合的エラーの軽減
- Authors: Angrosh Mandya, James O'Neill, Danushka Bollegala, and Frans Coenen
- Abstract要約: 事前に予測された回答をテスト時に使用すると、複合的なエラーが発生する。
本研究では,目標解とモデル予測を動的に選択するサンプリング戦略を提案する。
- 参考スコア(独自算出の注目度): 17.36904526340775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Conversational Question Answering (CoQA) task involves answering a
sequence of inter-related conversational questions about a contextual
paragraph. Although existing approaches employ human-written ground-truth
answers for answering conversational questions at test time, in a realistic
scenario, the CoQA model will not have any access to ground-truth answers for
the previous questions, compelling the model to rely upon its own previously
predicted answers for answering the subsequent questions. In this paper, we
find that compounding errors occur when using previously predicted answers at
test time, significantly lowering the performance of CoQA systems. To solve
this problem, we propose a sampling strategy that dynamically selects between
target answers and model predictions during training, thereby closely
simulating the situation at test time. Further, we analyse the severity of this
phenomena as a function of the question type, conversation length and domain
type.
- Abstract(参考訳): CoQA(Conversational Question Answering)タスクは、文脈的段落に関する一連の会話的質問に答えることである。
既存のアプローチでは、テスト時に会話的な質問に答えるために、人間による直感的な回答が採用されているが、現実的なシナリオでは、CoQAモデルは以前の質問に対する根本的直感的な回答にアクセスできない。
本稿では,事前に予測した応答をテスト時に使用すると複合エラーが発生し,coqaシステムの性能が著しく低下することを示す。
そこで本研究では,学習中に対象回答とモデル予測を動的に選択し,テスト時の状況を密にシミュレーションするサンプリング戦略を提案する。
さらに,この現象の深刻度を,質問型,会話長,ドメイン型の関数として分析する。
関連論文リスト
- Open Domain Question Answering with Conflicting Contexts [55.739842087655774]
あいまいでオープンなドメインの質問の25%は、Google Searchを使って検索すると、コンフリクトのあるコンテキストにつながります。
我々はアノテータに正しい回答の選択についての説明を依頼する。
論文 参考訳(メタデータ) (2024-10-16T07:24:28Z) - Question Answering in Natural Language: the Special Case of Temporal
Expressions [0.0]
本研究の目的は,1段落内の時間的質問に対する回答を見つけるために,一般的な質問応答や回答抽出に使用される一般的なアプローチを活用することである。
モデルをトレーニングするために、SQuADにインスパイアされた新しいデータセットを提案する。
本評価は,パターンマッチングを訓練した深層学習モデルにおいて,時間的質問応答に適応できることを示す。
論文 参考訳(メタデータ) (2023-11-23T16:26:24Z) - Event Extraction as Question Generation and Answering [72.04433206754489]
イベント抽出に関する最近の研究は、質問回答(QA)としてタスクを再編成した。
そこで我々は,QGA-EEを提案する。QGモデルにより,定型テンプレートを使わずに,リッチな文脈情報を含む質問を生成することができる。
実験の結果、QGA-EEはACE05の英語データセットで以前のシングルタスクベースのモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-07-10T01:46:15Z) - Keeping the Questions Conversational: Using Structured Representations
to Resolve Dependency in Conversational Question Answering [26.997542897342164]
本稿では,中間表現を会話の手がかりとして捉え,生成するための新しいフレームワークCONVSR(CONVQA using Structured Representations)を提案する。
我々はQuACとCANARDのデータセット上でモデルをテストし、提案するフレームワークが標準的な質問書き直しモデルよりも優れたF1スコアを達成できることを実験結果により示す。
論文 参考訳(メタデータ) (2023-04-14T13:42:32Z) - Realistic Conversational Question Answering with Answer Selection based
on Calibrated Confidence and Uncertainty Measurement [54.55643652781891]
対話型質問回答モデル(ConvQA)は,会話中に複数回発生した質問文と過去の質問文のペアを用いて質問に回答することを目的としている。
本稿では,会話履歴における不正確な回答を,ConvQAモデルから推定された信頼度と不確実性に基づいてフィルタリングすることを提案する。
我々は2つの標準ConvQAデータセット上で、回答選択に基づくリアルな会話質問回答モデルの有効性を検証する。
論文 参考訳(メタデータ) (2023-02-10T09:42:07Z) - CREPE: Open-Domain Question Answering with False Presuppositions [92.20501870319765]
オンライン情報検索フォーラムからの予測失敗の自然な分布を含むQAデータセットであるCREPEを紹介する。
25%の質問が偽の前提命題を含み、これらの前提命題とその修正のための注釈を提供する。
既存のオープンドメインQAモデルの適応は適度に予測できるが、仮定が実際に正しいかどうかを予測するのに苦労する。
論文 参考訳(メタデータ) (2022-11-30T18:54:49Z) - TASA: Deceiving Question Answering Models by Twin Answer Sentences
Attack [93.50174324435321]
本稿では,質問応答(QA)モデルに対する敵対的攻撃手法であるTASA(Twin Answer Sentences Attack)を提案する。
TASAは、金の回答を維持しながら、流動的で文法的な逆境を生み出す。
論文 参考訳(メタデータ) (2022-10-27T07:16:30Z) - Conversational QA Dataset Generation with Answer Revision [2.5838973036257458]
本稿では,一節から質問に値するフレーズを抽出し,過去の会話を考慮し,それに対応する質問を生成する新しい枠組みを提案する。
本フレームワークでは,抽出した回答を質問生成後に修正し,その回答が一致した質問に正確に一致するようにした。
論文 参考訳(メタデータ) (2022-09-23T04:05:38Z) - QAConv: Question Answering on Informative Conversations [85.2923607672282]
ビジネスメールやパネルディスカッション,作業チャネルなど,情報的な会話に重点を置いています。
合計で、スパンベース、フリーフォーム、および回答不能な質問を含む34,204のQAペアを収集します。
論文 参考訳(メタデータ) (2021-05-14T15:53:05Z) - A Wrong Answer or a Wrong Question? An Intricate Relationship between
Question Reformulation and Answer Selection in Conversational Question
Answering [15.355557454305776]
会話の文脈における質問書き直し(QR)は、この現象により多くの光を放つことができることを示す。
TREC CAsT と QuAC (CANARD) のデータセットを用いて解析を行った。
論文 参考訳(メタデータ) (2020-10-13T06:29:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。