Benchmarking Coherent Errors in Controlled-Phase Gates due to Spectator
Qubits
- URL: http://arxiv.org/abs/2005.05914v1
- Date: Tue, 12 May 2020 16:44:27 GMT
- Title: Benchmarking Coherent Errors in Controlled-Phase Gates due to Spectator
Qubits
- Authors: S. Krinner, S. Lazar, A. Remm, C. K. Andersen, N. Lacroix, G. J.
Norris, C. Hellings, M. Gabureac, C. Eichler, A. Wallraff
- Abstract summary: We benchmark phase errors in a controlled-phase gate due to dispersive coupling of either of the qubits involved in the gate to one or more spectator qubits.
Our work is important for understanding limits to the fidelity of two-qubit gates with finite on/off ratio in multi-qubit settings.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major challenge in operating multi-qubit quantum processors is to mitigate
multi-qubit coherent errors. For superconducting circuits, besides crosstalk
originating from imperfect isolation of control lines, dispersive coupling
between qubits is a major source of multi-qubit coherent errors. We benchmark
phase errors in a controlled-phase gate due to dispersive coupling of either of
the qubits involved in the gate to one or more spectator qubits. We measure the
associated gate infidelity using quantum process tomography. In addition, we
point out that, due to coupling of the gate qubits to a non-computational state
during the gate, two-qubit conditional phase errors are enhanced. Our work is
important for understanding limits to the fidelity of two-qubit gates with
finite on/off ratio in multi-qubit settings.
Related papers
- Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - Fast high-fidelity composite gates in superconducting qubits: Beating
the Fourier leakage limit [0.0]
We present a method for quantum control in superconducting qubits, which overcomes the Fourier limit for the gate duration imposed by leakage to upper states.
We use our approach to produce complete and partial population transfer between the qubit states, as well as the three basic single-qubit quantum gates.
arXiv Detail & Related papers (2022-05-09T10:10:05Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Crosstalk analysis for simultaneously driven two-qubit gates in spin
qubit arrays [0.0]
Crosstalk errors are caused by control operations on neighboring qubits.
We analyse the impact of crosstalk drives on qubit operations, such as the CNOT and CPHASE gates.
To minimize crosstalk errors, we develop appropriate control protocols.
arXiv Detail & Related papers (2021-11-19T12:04:32Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Quantum crosstalk analysis for simultaneous gate operations on
superconducting qubits [12.776712619117092]
We study the impact of quantum crosstalk on simultaneous gate operations in a qubit architecture.
Our analysis shows that for microwave-driven single-qubit gates, the dressing from the qubit-qubit coupling can cause non-negligible cross-driving errors.
arXiv Detail & Related papers (2021-10-25T01:21:04Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - High-fidelity, high-scalability two-qubit gate scheme for
superconducting qubits [16.01171409402694]
We experimentally demonstrate a new two-qubit gate scheme that exploits fixed-frequency qubits and a tunable coupler in a superconducting quantum circuit.
The scheme requires less control lines, reduces crosstalk effect, simplifies calibration procedures, yet produces a controlled-Z gate in 30ns with a high fidelity of 99.5%.
Our demonstration paves the way for large-scale implementation of high-fidelity quantum operations.
arXiv Detail & Related papers (2020-06-21T17:55:28Z) - Demonstration of an All-Microwave Controlled-Phase Gate between Far
Detuned Qubits [0.0]
We present an all-microwave controlled-phase gate between two transversely coupled transmon qubits.
Our gate constitutes a promising alternative to present two-qubit gates and could have hardware scaling advantages in large-scale quantum processors.
arXiv Detail & Related papers (2020-06-18T16:08:19Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.