論文の概要: MLSolv-A: A Novel Machine Learning-Based Prediction of Solvation Free
Energies from Pairwise Atomistic Interactions
- arxiv url: http://arxiv.org/abs/2005.06182v2
- Date: Thu, 2 Jul 2020 13:18:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 12:50:52.359263
- Title: MLSolv-A: A Novel Machine Learning-Based Prediction of Solvation Free
Energies from Pairwise Atomistic Interactions
- Title(参考訳): MLSolv-A: Pairwise Atomistic Interactions による解答自由エネルギーの機械学習による予測
- Authors: Hyuntae Lim and YounJoon Jung
- Abstract要約: MLに基づく新しい解法モデルを導入し, 対の原子間相互作用から解エネルギーを計算する。
6,493実験の結果, トレーニングデータの拡大に際し, 優れた性能と伝達性を実現した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in machine learning and their applications have lead to the
development of diverse structure-property relationship models for crucial
chemical properties, and the solvation free energy is one of them. Here, we
introduce a novel ML-based solvation model, which calculates the solvation
energy from pairwise atomistic interactions. The novelty of the proposed model
consists of a simple architecture: two encoding functions extract atomic
feature vectors from the given chemical structure, while the inner product
between two atomistic features calculates their interactions. The results on
6,493 experimental measurements achieve outstanding performance and
transferability for enlarging training data due to its solvent-non-specific
nature. Analysis of the interaction map shows there is a great potential that
our model reproduces group contributions on the solvation energy, which makes
us believe that the model not only provides the predicted target property but
also gives us more detailed physicochemical insights.
- Abstract(参考訳): 機械学習とその応用の最近の進歩は、重要な化学特性のための多様な構造-プロパティ関係モデルの開発に結びついており、その1つが溶解自由エネルギーである。
本稿では,一対の原子間相互作用から溶解エネルギーを計算するMLに基づく新しい解法モデルを提案する。
2つのエンコーディング関数は、与えられた化学構造から原子の特徴ベクトルを抽出し、2つの原子論的特徴の間の内積はそれらの相互作用を計算する。
6,493 の試験結果から, 溶媒非特異性によるトレーニングデータの拡大に優れた性能と伝達性を得た。
相互作用マップの解析から,本モデルが解離エネルギーに対する群寄与を再現する大きな可能性が示唆され,このモデルが予測対象特性を提供するだけでなく,より詳細な物理化学的洞察を与えると考えている。
関連論文リスト
- Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
本稿では,様々な有機反応関連タスクに適した新しい化学反応表現学習モデルであるモデルネームを紹介する。
反応物質と生成物との原子対応を統合することにより、反応中に生じる分子変換を識別し、反応機構の理解を深める。
反応条件を化学反応表現に組み込むアダプタ構造を設計し、様々な反応条件を処理し、様々なデータセットや下流タスク、例えば反応性能予測に適応できるようにした。
論文 参考訳(メタデータ) (2024-11-26T17:41:44Z) - Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
超イオン材料は、エネルギー密度と安全性を向上させる固体電池の推進に不可欠である。
このような物質を同定するための従来の計算手法は資源集約的であり、容易ではない。
普遍的原子間ポテンシャル解析によるイオン伝導率の迅速かつ確実な評価手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T09:01:36Z) - Response Matching for generating materials and molecules [0.0]
本稿では、応答マッチング(RM)と呼ばれる新しい生成手法を提案する。
RMは原子間相互作用の局所性を利用しており、本質的には置換、翻訳、回転、周期的不変性を尊重している。
3つのシステムにわたるRMの効率性と一般化を実証する。
論文 参考訳(メタデータ) (2024-05-15T03:08:21Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
本研究は、分子設計の課題を条件付き生成モデリングタスクとしてフレーミングすることによって検討する。
本研究では,(1)学習可能な事前分布を持つ潜伏ベクトル,(2)プロンプトとして潜伏ベクトルを用いる因果トランスフォーマーに基づく分子生成モデル,(3)潜在プロンプトを用いた分子の目標特性および/または制約値を予測する特性予測モデルからなる新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-02-27T03:33:23Z) - Machine Learning for Polaritonic Chemistry: Accessing chemical kinetics [0.0]
我々は、密度汎関数理論計算と分子動力学を用いて訓練された機械学習(ML)モデルの組み合わせに基づく枠組みを確立する。
我々は, 1-フェニル-2-トリメチルシリルアセチレンの脱保護反応における強結合, 反応速度定数の変化, エンタルピーおよびエントロピーへの影響を評価した。
我々は、特に運動学の変化に関して、批判的な実験的な観察と質的な一致を見いだす一方で、過去の理論的予測との違いも見いだす。
論文 参考訳(メタデータ) (2023-11-16T10:08:44Z) - Predicting Drug Solubility Using Different Machine Learning Methods --
Linear Regression Model with Extracted Chemical Features vs Graph
Convolutional Neural Network [1.8936798735951967]
我々は、線形回帰モデルとグラフ畳み込みニューラルネットワーク(GCNN)モデルという2つの機械学習モデルを用いて、様々な実験データセットを用いた。
現在のGCNNモデルは解釈可能性に制限があるが、線形回帰モデルは、基礎となる要因の詳細な分析を可能にする。
化学の観点からは, 線形回帰モデルを用いて, 個々の原子種と官能基が全体の溶解度に及ぼす影響を解明した。
論文 参考訳(メタデータ) (2023-08-23T15:35:20Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
我々は、cQDOモデルがフォトニック量子コンピュータ上でのシミュレーションに自然に役立っていることを示す。
我々は、XanaduのStrawberry Fieldsフォトニクスライブラリを利用して、二原子系の結合エネルギー曲線を計算する。
興味深いことに、2つの結合したボソニックQDOは安定な結合を示す。
論文 参考訳(メタデータ) (2023-06-14T14:44:12Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Toward Development of Machine Learned Techniques for Production of
Compact Kinetic Models [0.0]
化学動力学モデルは燃焼装置の開発と最適化に欠かせない要素である。
本稿では、過度に再現され、最適化された化学動力学モデルを生成するための、新しい自動計算強化手法を提案する。
論文 参考訳(メタデータ) (2022-02-16T12:31:24Z) - Multi-task learning for electronic structure to predict and explore
molecular potential energy surfaces [39.228041052681526]
我々はOrbNetモデルを洗練し、分子のエネルギー、力、その他の応答特性を正確に予測する。
このモデルは、すべての電子構造項に対する解析的勾配の導出により、エンドツーエンドで微分可能である。
ドメイン固有の特徴を用いることにより、化学空間をまたいで移動可能であることが示されている。
論文 参考訳(メタデータ) (2020-11-05T06:48:46Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
無機材料のバンドギャップを予測できるいくつかの異なるグラフ畳み込みネットワークを提示し、比較する。
モデルは、それぞれの軌道自体の情報と相互の相互作用の2つの異なる特徴を組み込むように開発されている。
その結果,クロスバリデーションにより予測精度が期待できることがわかった。
論文 参考訳(メタデータ) (2020-05-27T13:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。