Boosting on the shoulders of giants in quantum device calibration
- URL: http://arxiv.org/abs/2005.06194v1
- Date: Wed, 13 May 2020 07:59:57 GMT
- Title: Boosting on the shoulders of giants in quantum device calibration
- Authors: Alex Wozniakowski, Jayne Thompson, Mile Gu, Felix Binder
- Abstract summary: We introduce a new approach to machine learning that is able to leverage prior scientific discoveries.
We show its efficacy in predicting the entire energy spectrum of a Hamiltonian on a superconducting quantum device.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional machine learning applications, such as optical character
recognition, arose from the inability to explicitly program a computer to
perform a routine task. In this context, learning algorithms usually derive a
model exclusively from the evidence present in a massive dataset. Yet in some
scientific disciplines, obtaining an abundance of data is an impractical
luxury, however; there is an explicit model of the domain based upon previous
scientific discoveries. Here we introduce a new approach to machine learning
that is able to leverage prior scientific discoveries in order to improve
generalizability over a scientific model. We show its efficacy in predicting
the entire energy spectrum of a Hamiltonian on a superconducting quantum
device, a key task in present quantum computer calibration. Our accuracy
surpasses the current state-of-the-art by over $20\%.$ Our approach thus
demonstrates how artificial intelligence can be further enhanced by "standing
on the shoulders of giants."
Related papers
- Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum neural networks force fields generation [0.0]
We design a quantum neural network architecture and apply it successfully to different molecules of growing complexity.
The quantum models exhibit larger effective dimension with respect to classical counterparts and can reach competitive performances.
arXiv Detail & Related papers (2022-03-09T12:10:09Z) - New Trends in Quantum Machine Learning [0.0]
We will explore the ways in which machine learning could benefit from new quantum technologies and algorithms.
Data visualization techniques and other schemes borrowed from machine learning can be of great use to theoreticians.
arXiv Detail & Related papers (2021-08-22T08:23:30Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Quantum Machine Learning: Fad or Future? [0.0]
We're fast approach the threshold of the maximum possible computational capacity available to us by the means of classical computing devices.
This is due to the exponential increase in model sizes which now have parameters in the magnitude of billions and trillions.
This paper will look forth to test and verify the aspects in which quantum machine learning can help improve over classical machine learning approaches.
arXiv Detail & Related papers (2021-06-20T15:39:36Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
We design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations.
We experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, matching the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional synthetic data.
arXiv Detail & Related papers (2020-12-08T01:10:30Z) - Power of data in quantum machine learning [2.1012068875084964]
We show that some problems that are classically hard to compute can be easily predicted by classical machines learning from data.
We propose a projected quantum model that provides a simple and rigorous quantum speed-up for a learning problem in the fault-tolerant regime.
arXiv Detail & Related papers (2020-11-03T19:00:01Z) - Scientific intuition inspired by machine learning generated hypotheses [2.294014185517203]
We shift the focus on the insights and the knowledge obtained by the machine learning models themselves.
We apply gradient boosting in decision trees to extract human interpretable insights from big data sets from chemistry and physics.
The ability to go beyond numerics opens the door to use machine learning to accelerate the discovery of conceptual understanding.
arXiv Detail & Related papers (2020-10-27T12:12:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.