Scientific intuition inspired by machine learning generated hypotheses
- URL: http://arxiv.org/abs/2010.14236v2
- Date: Mon, 14 Dec 2020 18:31:14 GMT
- Title: Scientific intuition inspired by machine learning generated hypotheses
- Authors: Pascal Friederich, Mario Krenn, Isaac Tamblyn, Alan Aspuru-Guzik
- Abstract summary: We shift the focus on the insights and the knowledge obtained by the machine learning models themselves.
We apply gradient boosting in decision trees to extract human interpretable insights from big data sets from chemistry and physics.
The ability to go beyond numerics opens the door to use machine learning to accelerate the discovery of conceptual understanding.
- Score: 2.294014185517203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning with application to questions in the physical sciences has
become a widely used tool, successfully applied to classification, regression
and optimization tasks in many areas. Research focus mostly lies in improving
the accuracy of the machine learning models in numerical predictions, while
scientific understanding is still almost exclusively generated by human
researchers analysing numerical results and drawing conclusions. In this work,
we shift the focus on the insights and the knowledge obtained by the machine
learning models themselves. In particular, we study how it can be extracted and
used to inspire human scientists to increase their intuitions and understanding
of natural systems. We apply gradient boosting in decision trees to extract
human interpretable insights from big data sets from chemistry and physics. In
chemistry, we not only rediscover widely know rules of thumb but also find new
interesting motifs that tell us how to control solubility and energy levels of
organic molecules. At the same time, in quantum physics, we gain new
understanding on experiments for quantum entanglement. The ability to go beyond
numerics and to enter the realm of scientific insight and hypothesis generation
opens the door to use machine learning to accelerate the discovery of
conceptual understanding in some of the most challenging domains of science.
Related papers
- LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - Opportunities for machine learning in scientific discovery [16.526872562935463]
We review how the scientific community can increasingly leverage machine-learning techniques to achieve scientific discoveries.
Although challenges remain, principled use of ML is opening up new avenues for fundamental scientific discoveries.
arXiv Detail & Related papers (2024-05-07T09:58:02Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
We show how large language models can perform scientific synthesis, inference, and explanation.
We show that the large language model can augment this "knowledge" by synthesizing from the scientific literature.
This approach has the further advantage that the large language model can explain the machine learning system's predictions.
arXiv Detail & Related papers (2023-10-12T02:17:59Z) - The Physics of Machine Learning: An Intuitive Introduction for the
Physical Scientist [0.0]
This article is intended for physical scientists who wish to gain deeper insights into machine learning algorithms.
We begin with a review of two energy-based machine learning algorithms, Hopfield networks and Boltzmann machines, and their connection to the Ising model.
We then delve into additional, more "practical," machine learning architectures including feedforward neural networks, convolutional neural networks, and autoencoders.
arXiv Detail & Related papers (2021-11-27T15:12:42Z) - New Trends in Quantum Machine Learning [0.0]
We will explore the ways in which machine learning could benefit from new quantum technologies and algorithms.
Data visualization techniques and other schemes borrowed from machine learning can be of great use to theoreticians.
arXiv Detail & Related papers (2021-08-22T08:23:30Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - Boosting on the shoulders of giants in quantum device calibration [0.0]
We introduce a new approach to machine learning that is able to leverage prior scientific discoveries.
We show its efficacy in predicting the entire energy spectrum of a Hamiltonian on a superconducting quantum device.
arXiv Detail & Related papers (2020-05-13T07:59:57Z) - Computer-inspired Quantum Experiments [1.2891210250935146]
In many disciplines, computer-inspired design processes, also known as inverse-design, have augmented the capability of scientists.
We will meet vastly diverse computational approaches based on topological optimization, evolutionary strategies, deep learning, reinforcement learning or automated reasoning.
arXiv Detail & Related papers (2020-02-23T18:59:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.