Classification of Arrhythmia by Using Deep Learning with 2-D ECG
Spectral Image Representation
- URL: http://arxiv.org/abs/2005.06902v2
- Date: Mon, 25 May 2020 16:44:45 GMT
- Title: Classification of Arrhythmia by Using Deep Learning with 2-D ECG
Spectral Image Representation
- Authors: Amin Ullah, Syed M. Anwar, Muhammad Bilal, and Raja M Mehmood
- Abstract summary: We propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes.
We achieved a state-of-the-art average classification accuracy of 99.11%, which is better than those of recently reported results in classifying similar types of arrhythmias.
- Score: 3.3426603061273994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The electrocardiogram (ECG) is one of the most extensively employed signals
used in the diagnosis and prediction of cardiovascular diseases (CVDs). The ECG
signals can capture the heart's rhythmic irregularities, commonly known as
arrhythmias. A careful study of ECG signals is crucial for precise diagnoses of
patients' acute and chronic heart conditions. In this study, we propose a
two-dimensional (2-D) convolutional neural network (CNN) model for the
classification of ECG signals into eight classes; namely, normal beat,
premature ventricular contraction beat, paced beat, right bundle branch block
beat, left bundle branch block beat, atrial premature contraction beat,
ventricular flutter wave beat, and ventricular escape beat. The one-dimensional
ECG time series signals are transformed into 2-D spectrograms through
short-time Fourier transform. The 2-D CNN model consisting of four
convolutional layers and four pooling layers is designed for extracting robust
features from the input spectrograms. Our proposed methodology is evaluated on
a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art
average classification accuracy of 99.11\%, which is better than those of
recently reported results in classifying similar types of arrhythmias. The
performance is significant in other indices as well, including sensitivity and
specificity, which indicates the success of the proposed method.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - Deciphering Heartbeat Signatures: A Vision Transformer Approach to Explainable Atrial Fibrillation Detection from ECG Signals [4.056982620027252]
We develop a vision transformer approach to identify atrial fibrillation based on single-lead ECG data.
A residual network (ResNet) approach is also developed for comparison with the vision transformer approach.
arXiv Detail & Related papers (2024-02-12T11:04:08Z) - ECGformer: Leveraging transformer for ECG heartbeat arrhythmia
classification [0.0]
An arrhythmia, also known as a dysrhythmia, refers to an irregular heartbeat.
Deep learning has demonstrated exceptional capabilities in tackling various medical challenges.
We develop the ECGformer model for the classification of various arrhythmias present in electrocardiogram data.
arXiv Detail & Related papers (2024-01-06T06:14:48Z) - Deep Learning Models for Arrhythmia Classification Using Stacked
Time-frequency Scalogram Images from ECG Signals [4.659427498118277]
This paper proposes an automated AI based system for ECG-based arrhythmia classification.
Deep learning based solution has been proposed for ECG-based arrhythmia classification.
arXiv Detail & Related papers (2023-12-01T03:16:32Z) - Multi-scale Cross-restoration Framework for Electrocardiogram Anomaly
Detection [33.48389041651675]
Electrocardiogram (ECG) is a widely used diagnostic tool for detecting heart conditions.
Rare cardiac diseases may be underdiagnosed using traditional ECG analysis, considering that no training dataset can exhaust all possible cardiac disorders.
This paper proposes using anomaly detection to identify any unhealthy status, with normal ECGs solely for training.
arXiv Detail & Related papers (2023-08-03T09:16:57Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - SEVGGNet-LSTM: a fused deep learning model for ECG classification [38.747030782394646]
The input ECG signals are firstly segmented and normalized, and then fed into the combined VGG and LSTM network for feature extraction and classification.
An attention mechanism (SE block) is embedded into the core network for increasing the weight of important features.
arXiv Detail & Related papers (2022-10-31T07:36:48Z) - Two-stream Network for ECG Signal Classification [3.222802562733787]
This paper explores an effective algorithm for automatic classifications of multi-classes of heartbeat types based on ECG.
A two-stream architecture is used in this paper and presents an enhanced version of ECG recognition based on this.
Results on the MIT-BIH Arrhythmia Database demonstrate that the proposed algorithm performs an accuracy of 99.38%.
arXiv Detail & Related papers (2022-10-05T08:14:51Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
This paper introduces a light deep learning approach for high accuracy detection of 8 different cardiac arrhythmias and normal rhythm.
A trained model for arrhythmia classification using diverse ECG signals were successfully developed and tested.
arXiv Detail & Related papers (2022-08-29T05:01:04Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
We propose a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states.
We exploit recent advancements in attention based learning to segment the PCG signal.
The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings.
arXiv Detail & Related papers (2020-04-02T02:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.