Vibration Analysis in Bearings for Failure Prevention using CNN
- URL: http://arxiv.org/abs/2005.07057v2
- Date: Thu, 16 Jul 2020 15:52:55 GMT
- Title: Vibration Analysis in Bearings for Failure Prevention using CNN
- Authors: Luis A. Pinedo-Sanchez, Diego A. Mercado-Ravell, Carlos A.
Carballo-Monsivais
- Abstract summary: We propose a method based on Convolutional Neural Networks (CNN) to estimate the level of wear in bearings.
The effectiveness of the proposed strategy proved to be excellent, outperforming other approaches in the state-of-the-art.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Timely failure detection for bearings is of great importance to prevent
economic loses in the industry. In this article we propose a method based on
Convolutional Neural Networks (CNN) to estimate the level of wear in bearings.
First of all, an automatic labeling of the raw vibration data is performed to
obtain different levels of bearing wear, by means of the Root Mean Square
features along with the Shannon's entropy to extract features from the raw
data, which is then grouped in seven different classes using the K-means
algorithm to obtain the labels. Then, the raw vibration data is converted into
small square images, each sample of the data representing one pixel of the
image. Following this, we propose a CNN model based on the AlexNet architecture
to classify the wear level and diagnose the rotatory system. To train the
network and validate our proposal, we use a dataset from the center of
Intelligent Maintenance Systems (IMS), and extensively compare it with other
methods reported in the literature. The effectiveness of the proposed strategy
proved to be excellent, outperforming other approaches in the state-of-the-art.
Related papers
- Few-shot Learning using Data Augmentation and Time-Frequency
Transformation for Time Series Classification [6.830148185797109]
We propose a novel few-shot learning framework through data augmentation.
We also develop a sequence-spectrogram neural network (SSNN)
Our methodology demonstrates its applicability of addressing the few-shot problems for time series classification.
arXiv Detail & Related papers (2023-11-06T15:32:50Z) - Combating Bilateral Edge Noise for Robust Link Prediction [56.43882298843564]
We propose an information-theory-guided principle, Robust Graph Information Bottleneck (RGIB), to extract reliable supervision signals and avoid representation collapse.
Two instantiations, RGIB-SSL and RGIB-REP, are explored to leverage the merits of different methodologies.
Experiments on six datasets and three GNNs with diverse noisy scenarios verify the effectiveness of our RGIB instantiations.
arXiv Detail & Related papers (2023-11-02T12:47:49Z) - Graph Neural Network-based Early Bearing Fault Detection [0.18275108630751835]
A novel graph neural network-based fault detection method is proposed.
It builds a bridge between AI and real-world running mechanical systems.
We find that the proposed method can successfully detect faulty objects that are mixed in the normal object region.
arXiv Detail & Related papers (2022-04-24T08:54:55Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Anomaly Detection in Image Datasets Using Convolutional Neural Networks,
Center Loss, and Mahalanobis Distance [0.0]
User activities generate a significant number of poor-quality or irrelevant images and data vectors.
For neural networks, the anomalous is usually defined as out-of-distribution samples.
This work proposes methods for supervised and semi-supervised detection of out-of-distribution samples in image datasets.
arXiv Detail & Related papers (2021-04-13T13:44:03Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm.
We exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting.
arXiv Detail & Related papers (2020-12-16T21:46:33Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Unsupervised machine learning via transfer learning and k-means
clustering to classify materials image data [0.0]
This paper demonstrates how to construct, use, and evaluate a high performance unsupervised machine learning system for classifying images.
We use the VGG16 convolutional neural network pre-trained on the ImageNet dataset of natural images to extract feature representations for each micrograph.
The approach achieves $99.4% pm 0.16%$ accuracy, and the resulting model can be used to classify new images without retraining.
arXiv Detail & Related papers (2020-07-16T14:36:04Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.