NAT: Noise-Aware Training for Robust Neural Sequence Labeling
- URL: http://arxiv.org/abs/2005.07162v1
- Date: Thu, 14 May 2020 17:30:06 GMT
- Title: NAT: Noise-Aware Training for Robust Neural Sequence Labeling
- Authors: Marcin Namysl, Sven Behnke and Joachim K\"ohler
- Abstract summary: We propose two Noise-Aware Training (NAT) objectives that improve robustness of sequence labeling performed on input.
Our data augmentation method trains a neural model using a mixture of clean and noisy samples, whereas our stability training algorithm encourages the model to create a noise-invariant latent representation.
Experiments on English and German named entity recognition benchmarks confirmed that NAT consistently improved robustness of popular sequence labeling models.
- Score: 30.91638109413785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequence labeling systems should perform reliably not only under ideal
conditions but also with corrupted inputs - as these systems often process
user-generated text or follow an error-prone upstream component. To this end,
we formulate the noisy sequence labeling problem, where the input may undergo
an unknown noising process and propose two Noise-Aware Training (NAT)
objectives that improve robustness of sequence labeling performed on perturbed
input: Our data augmentation method trains a neural model using a mixture of
clean and noisy samples, whereas our stability training algorithm encourages
the model to create a noise-invariant latent representation. We employ a
vanilla noise model at training time. For evaluation, we use both the original
data and its variants perturbed with real OCR errors and misspellings.
Extensive experiments on English and German named entity recognition benchmarks
confirmed that NAT consistently improved robustness of popular sequence
labeling models, preserving accuracy on the original input. We make our code
and data publicly available for the research community.
Related papers
- Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Label-Noise Robust Diffusion Models [18.82847557713331]
Conditional diffusion models have shown remarkable performance in various generative tasks.
Training them requires large-scale datasets that often contain noise in conditional inputs, a.k.a. noisy labels.
This paper proposes Transition-aware weighted Denoising Score Matching for training conditional diffusion models with noisy labels.
arXiv Detail & Related papers (2024-02-27T14:00:34Z) - Noisy Pair Corrector for Dense Retrieval [59.312376423104055]
We propose a novel approach called Noisy Pair Corrector (NPC)
NPC consists of a detection module and a correction module.
We conduct experiments on text-retrieval benchmarks Natural Question and TriviaQA, code-search benchmarks StaQC and SO-DS.
arXiv Detail & Related papers (2023-11-07T08:27:14Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
We reformulate the SED problem by taking a generative learning perspective.
Specifically, we aim to generate sound temporal boundaries from noisy proposals in a denoising diffusion process.
During training, our model learns to reverse the noising process by converting noisy latent queries to the groundtruth versions.
arXiv Detail & Related papers (2023-08-14T17:29:41Z) - Latent Class-Conditional Noise Model [54.56899309997246]
We introduce a Latent Class-Conditional Noise model (LCCN) to parameterize the noise transition under a Bayesian framework.
We then deduce a dynamic label regression method for LCCN, whose Gibbs sampler allows us efficiently infer the latent true labels.
Our approach safeguards the stable update of the noise transition, which avoids previous arbitrarily tuning from a mini-batch of samples.
arXiv Detail & Related papers (2023-02-19T15:24:37Z) - Uncertainty-aware Self-training for Low-resource Neural Sequence
Labeling [29.744621356187764]
This paper presents SeqUST, a novel uncertain-aware self-training framework for Neural sequence labeling (NSL)
We incorporate Monte Carlo (MC) dropout in Bayesian neural network (BNN) to perform uncertainty estimation at the token level and then select reliable language tokens from unlabeled data.
A well-designed masked sequence labeling task with a noise-robust loss supports robust training, which aims to suppress the problem of noisy pseudo labels.
arXiv Detail & Related papers (2023-02-17T02:40:04Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Understanding Model Robustness to User-generated Noisy Texts [2.958690090551675]
In NLP, model performance often deteriorates with naturally occurring noise, such as spelling errors.
We propose to model the errors statistically from grammatical-error-correction corpora.
arXiv Detail & Related papers (2021-10-14T14:54:52Z) - Empirical Error Modeling Improves Robustness of Noisy Neural Sequence
Labeling [26.27504889360246]
We propose an empirical error generation approach that employs a sequence-to-sequence model trained to perform translation from error-free to erroneous text.
To overcome the data sparsity problem that exacerbates in the case of imperfect textual input, we learned noisy language model-based embeddings.
Our approach outperformed the baseline noise generation and error correction techniques on the erroneous sequence labeling data sets.
arXiv Detail & Related papers (2021-05-25T12:15:45Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.