Robust Testing for Deep Learning using Human Label Noise
- URL: http://arxiv.org/abs/2412.00244v1
- Date: Fri, 29 Nov 2024 20:31:57 GMT
- Title: Robust Testing for Deep Learning using Human Label Noise
- Authors: Gordon Lim, Stefan Larson, Kevin Leach,
- Abstract summary: In deep learning (DL) systems, label noise in training datasets often degrades model performance.
Traditionally, these methods are tested using synthetic label noise, where ground truth labels are randomly flipped.
We present Cluster-Based Noise (CBN), a method for generating feature-dependent noise that simulates human-like label noise.
- Score: 5.9848836847249185
- License:
- Abstract: In deep learning (DL) systems, label noise in training datasets often degrades model performance, as models may learn incorrect patterns from mislabeled data. The area of Learning with Noisy Labels (LNL) has introduced methods to effectively train DL models in the presence of noisily-labeled datasets. Traditionally, these methods are tested using synthetic label noise, where ground truth labels are randomly (and automatically) flipped. However, recent findings highlight that models perform substantially worse under human label noise than synthetic label noise, indicating a need for more realistic test scenarios that reflect noise introduced due to imperfect human labeling. This underscores the need for generating realistic noisy labels that simulate human label noise, enabling rigorous testing of deep neural networks without the need to collect new human-labeled datasets. To address this gap, we present Cluster-Based Noise (CBN), a method for generating feature-dependent noise that simulates human-like label noise. Using insights from our case study of label memorization in the CIFAR-10N dataset, we design CBN to create more realistic tests for evaluating LNL methods. Our experiments demonstrate that current LNL methods perform worse when tested using CBN, highlighting its use as a rigorous approach to testing neural networks. Next, we propose Soft Neighbor Label Sampling (SNLS), a method designed to handle CBN, demonstrating its improvement over existing techniques in tackling this more challenging type of noise.
Related papers
- NoiseBench: Benchmarking the Impact of Real Label Noise on Named Entity Recognition [3.726602636064681]
We present an analysis that shows that real noise is significantly more challenging than simulated noise.
We show that current state-of-the-art models for noise-robust learning fall far short of their theoretically achievable upper bound.
arXiv Detail & Related papers (2024-05-13T10:20:31Z) - Combating Label Noise With A General Surrogate Model For Sample Selection [77.45468386115306]
We propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically.
We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets.
arXiv Detail & Related papers (2023-10-16T14:43:27Z) - Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation [16.283722126438125]
Label Noise Learning (LNL) incorporates a sample selection stage to differentiate clean and noisy-label samples.
Such curriculum is sub-optimal since it does not consider the actual label noise rate in the training set.
This paper addresses this issue with a new noise-rate estimation method that is easily integrated with most state-of-the-art (SOTA) LNL methods.
arXiv Detail & Related papers (2023-05-31T01:46:14Z) - BadLabel: A Robust Perspective on Evaluating and Enhancing Label-noise
Learning [113.8799653759137]
We introduce a novel label noise type called BadLabel, which can significantly degrade the performance of existing LNL algorithms by a large margin.
BadLabel is crafted based on the label-flipping attack against standard classification.
We propose a robust LNL method that perturbs the labels in an adversarial manner at each epoch to make the loss values of clean and noisy labels again distinguishable.
arXiv Detail & Related papers (2023-05-28T06:26:23Z) - NoisywikiHow: A Benchmark for Learning with Real-world Noisy Labels in
Natural Language Processing [26.678589684142548]
Large-scale datasets in the real world inevitably involve label noise.
Deep models can gradually overfit noisy labels and thus degrade generalization performance.
To mitigate the effects of label noise, learning with noisy labels (LNL) methods are designed to achieve better generalization performance.
arXiv Detail & Related papers (2023-05-18T05:01:04Z) - Latent Class-Conditional Noise Model [54.56899309997246]
We introduce a Latent Class-Conditional Noise model (LCCN) to parameterize the noise transition under a Bayesian framework.
We then deduce a dynamic label regression method for LCCN, whose Gibbs sampler allows us efficiently infer the latent true labels.
Our approach safeguards the stable update of the noise transition, which avoids previous arbitrarily tuning from a mini-batch of samples.
arXiv Detail & Related papers (2023-02-19T15:24:37Z) - Robust Meta-learning with Sampling Noise and Label Noise via
Eigen-Reptile [78.1212767880785]
meta-learner is prone to overfitting since there are only a few available samples.
When handling the data with noisy labels, the meta-learner could be extremely sensitive to label noise.
We present Eigen-Reptile (ER) that updates the meta- parameters with the main direction of historical task-specific parameters.
arXiv Detail & Related papers (2022-06-04T08:48:02Z) - Is BERT Robust to Label Noise? A Study on Learning with Noisy Labels in
Text Classification [23.554544399110508]
Wrong labels in training data occur when human annotators make mistakes or when the data is generated via weak or distant supervision.
It has been shown that complex noise-handling techniques are required to prevent models from fitting this label noise.
We show in this work that, for text classification tasks with modern NLP models like BERT, over a variety of noise types, existing noisehandling methods do not always improve its performance, and may even deteriorate it.
arXiv Detail & Related papers (2022-04-20T10:24:19Z) - Learning with Noisy Labels Revisited: A Study Using Real-World Human
Annotations [54.400167806154535]
Existing research on learning with noisy labels mainly focuses on synthetic label noise.
This work presents two new benchmark datasets (CIFAR-10N, CIFAR-100N)
We show that real-world noisy labels follow an instance-dependent pattern rather than the classically adopted class-dependent ones.
arXiv Detail & Related papers (2021-10-22T22:42:11Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.